These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Directed Evolution of Orthogonal Pyrrolysyl-tRNA Synthetases in Escherichia coli for the Genetic Encoding of Noncanonical Amino Acids. Schmidt MJ; Summerer D Methods Mol Biol; 2018; 1728():97-111. PubMed ID: 29404992 [TBL] [Abstract][Full Text] [Related]
4. An Evolved Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase/tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells. Beránek V; Willis JCW; Chin JW Biochemistry; 2019 Feb; 58(5):387-390. PubMed ID: 30260626 [TBL] [Abstract][Full Text] [Related]
5. Site Specific Lysine Acetylation of Histones for Nucleosome Reconstitution using Genetic Code Expansion in Escherichia coli. Rowlett CM; Liu WR J Vis Exp; 2020 Dec; (166):. PubMed ID: 33427240 [TBL] [Abstract][Full Text] [Related]
7. Evolving the N-Terminal Domain of Pyrrolysyl-tRNA Synthetase for Improved Incorporation of Noncanonical Amino Acids. Sharma V; Zeng Y; Wang WW; Qiao Y; Kurra Y; Liu WR Chembiochem; 2018 Jan; 19(1):26-30. PubMed ID: 29096043 [TBL] [Abstract][Full Text] [Related]
8. Directed Evolution of the Schwark DG; Schmitt MA; Fisk JD Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477414 [TBL] [Abstract][Full Text] [Related]
9. Crystal Structure of Pyrrolysyl-tRNA Synthetase from a Methanogenic Archaeon ISO4-G1 and Its Structure-Based Engineering for Highly-Productive Cell-Free Genetic Code Expansion with Non-Canonical Amino Acids. Yanagisawa T; Seki E; Tanabe H; Fujii Y; Sakamoto K; Yokoyama S Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047230 [TBL] [Abstract][Full Text] [Related]
10. Structural Robustness Affects the Engineerability of Aminoacyl-tRNA Synthetases for Genetic Code Expansion. Grasso KT; Yeo MJR; Hillenbrand CM; Ficaretta ED; Italia JS; Huang RL; Chatterjee A Biochemistry; 2021 Feb; 60(7):489-493. PubMed ID: 33560840 [TBL] [Abstract][Full Text] [Related]
11. Focused Engineering of Pyrrolysyl-tRNA Synthetase-Based Orthogonal Translation Systems for the Incorporation of Various Noncanonical Amino Acids. Koch NG; Budisa N Methods Mol Biol; 2023; 2676():3-19. PubMed ID: 37277621 [TBL] [Abstract][Full Text] [Related]
12. Exploration of Stieglitz JT; Lahiri P; Stout MI; Van Deventer JA ACS Synth Biol; 2022 May; 11(5):1824-1834. PubMed ID: 35417129 [TBL] [Abstract][Full Text] [Related]
13. Structural Basis for Genetic-Code Expansion with Bulky Lysine Derivatives by an Engineered Pyrrolysyl-tRNA Synthetase. Yanagisawa T; Kuratani M; Seki E; Hino N; Sakamoto K; Yokoyama S Cell Chem Biol; 2019 Jul; 26(7):936-949.e13. PubMed ID: 31031143 [TBL] [Abstract][Full Text] [Related]
14. Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids. Fan C; Xiong H; Reynolds NM; Söll D Nucleic Acids Res; 2015 Dec; 43(22):e156. PubMed ID: 26250114 [TBL] [Abstract][Full Text] [Related]
15. Two-Tier Screening Platform for Directed Evolution of Aminoacyl-tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency. Owens AE; Grasso KT; Ziegler CA; Fasan R Chembiochem; 2017 Jun; 18(12):1109-1116. PubMed ID: 28383180 [TBL] [Abstract][Full Text] [Related]
17. Transferability of N-terminal mutations of pyrrolysyl-tRNA synthetase in one species to that in another species on unnatural amino acid incorporation efficiency. Williams TL; Iskandar DJ; Nödling AR; Tan Y; Luk LYP; Tsai YH Amino Acids; 2021 Jan; 53(1):89-96. PubMed ID: 33331978 [TBL] [Abstract][Full Text] [Related]
18. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Wan W; Tharp JM; Liu WR Biochim Biophys Acta; 2014 Jun; 1844(6):1059-70. PubMed ID: 24631543 [TBL] [Abstract][Full Text] [Related]