These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 32931735)

  • 41. BB0326 is responsible for the formation of periplasmic flagellar collar and assembly of the stator complex in Borrelia burgdorferi.
    Xu H; He J; Liu J; Motaleb MA
    Mol Microbiol; 2020 Feb; 113(2):418-429. PubMed ID: 31743518
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sodium-driven energy conversion for flagellar rotation of the earliest divergent hyperthermophilic bacterium.
    Takekawa N; Nishiyama M; Kaneseki T; Kanai T; Atomi H; Kojima S; Homma M
    Sci Rep; 2015 Aug; 5():12711. PubMed ID: 26244427
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relaxation time asymmetry in stator dynamics of the bacterial flagellar motor.
    Perez-Carrasco R; Franco-Oñate MJ; Walter JC; Dorignac J; Geniet F; Palmeri J; Parmeggiani A; Walliser NO; Nord AL
    Sci Adv; 2022 Mar; 8(12):eabl8112. PubMed ID: 35319986
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hoop-like role of the cytosolic interface helix in Vibrio PomA, an ion-conducting membrane protein, in the bacterial flagellar motor.
    Nishikino T; Sagara Y; Terashima H; Homma M; Kojima S
    J Biochem; 2022 Mar; 171(4):443-450. PubMed ID: 35015887
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamics in the Dual Fuel Flagellar Motor of Shewanella oneidensis MR-1.
    Brenzinger S; Thormann KM
    Methods Mol Biol; 2017; 1593():285-295. PubMed ID: 28389963
    [TBL] [Abstract][Full Text] [Related]  

  • 46. FliL ring enhances the function of periplasmic flagella.
    Guo S; Xu H; Chang Y; Motaleb MA; Liu J
    Proc Natl Acad Sci U S A; 2022 Mar; 119(11):e2117245119. PubMed ID: 35254893
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure of
    Takekawa N; Isumi M; Terashima H; Zhu S; Nishino Y; Sakuma M; Kojima S; Homma M; Imada K
    mBio; 2019 Mar; 10(2):. PubMed ID: 30890608
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Load-dependent adaptation near zero load in the bacterial flagellar motor.
    Nirody JA; Nord AL; Berry RM
    J R Soc Interface; 2019 Oct; 16(159):20190300. PubMed ID: 31575345
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FliL associates with the stator to support torque generation of the sodium-driven polar flagellar motor of Vibrio.
    Zhu S; Kumar A; Kojima S; Homma M
    Mol Microbiol; 2015 Oct; 98(1):101-10. PubMed ID: 26103585
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measurements of the Ion Channel Activity of the Transmembrane Stator Complex in the Bacterial Flagellar Motor.
    Morimoto YV; Minamino T
    Methods Mol Biol; 2023; 2646():83-94. PubMed ID: 36842108
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cooperative stator assembly of bacterial flagellar motor mediated by rotation.
    Ito KI; Nakamura S; Toyabe S
    Nat Commun; 2021 May; 12(1):3218. PubMed ID: 34050167
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Torque-dependent remodeling of the bacterial flagellar motor.
    Wadhwa N; Phillips R; Berg HC
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):11764-11769. PubMed ID: 31142644
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of the MotB(D33N) mutation on stator assembly and rotation of the proton-driven bacterial flagellar motor.
    Nakamura S; Minamino T; Kami-Ike N; Kudo S; Namba K
    Biophysics (Nagoya-shi); 2014; 10():35-41. PubMed ID: 27493496
    [TBL] [Abstract][Full Text] [Related]  

  • 54. FliL and its paralog MotF have distinct roles in the stator activity of the Sinorhizobium meliloti flagellar motor.
    Sobe RC; Gilbert C; Vo L; Alexandre G; Scharf BE
    Mol Microbiol; 2022 Sep; 118(3):223-243. PubMed ID: 35808893
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Site-Directed Cross-Linking Between Bacterial Flagellar Motor Proteins In Vivo.
    Terashima H; Homma M; Kojima S
    Methods Mol Biol; 2023; 2646():71-82. PubMed ID: 36842107
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proposed model for the flagellar rotary motor with shear stress transmission.
    Mitsui T; Ohshima H
    Biophysics (Nagoya-shi); 2012; 8():151-62. PubMed ID: 27493532
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contribution of many charged residues at the stator-rotor interface of the Na+-driven flagellar motor to torque generation in Vibrio alginolyticus.
    Takekawa N; Kojima S; Homma M
    J Bacteriol; 2014 Apr; 196(7):1377-85. PubMed ID: 24464458
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation.
    Morimoto YV; Nakamura S; Hiraoka KD; Namba K; Minamino T
    J Bacteriol; 2013 Feb; 195(3):474-81. PubMed ID: 23161029
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the periplasmic domain of MotB and implications for its role in the stator assembly of the bacterial flagellar motor.
    Kojima S; Furukawa Y; Matsunami H; Minamino T; Namba K
    J Bacteriol; 2008 May; 190(9):3314-22. PubMed ID: 18310339
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct observation of speed fluctuations of flagellar motor rotation at extremely low load close to zero.
    Nakamura S; Hanaizumi Y; Morimoto YV; Inoue Y; Erhardt M; Minamino T; Namba K
    Mol Microbiol; 2020 Apr; 113(4):755-765. PubMed ID: 31828860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.