These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 32932028)
1. Presurgical detection of brain invasion status in meningiomas based on first-order histogram based texture analysis of contrast enhanced imaging. Kandemirli SG; Chopra S; Priya S; Ward C; Locke T; Soni N; Srivastava S; Jones K; Bathla G Clin Neurol Neurosurg; 2020 Nov; 198():106205. PubMed ID: 32932028 [TBL] [Abstract][Full Text] [Related]
2. Multiparameter MRI-based radiomics nomogram for preoperative prediction of brain invasion in atypical meningioma:a multicentre study. Yu J; Kong X; Xie D; Zheng F; Wang C; Shi D; He C; Liang X; Xu H; Li S; Chen X BMC Med Imaging; 2024 Jun; 24(1):134. PubMed ID: 38840054 [TBL] [Abstract][Full Text] [Related]
3. Dynamic susceptibility contrast and dynamic contrast-enhanced MRI characteristics to distinguish microcystic meningiomas from traditional Grade I meningiomas and high-grade gliomas. Hussain NS; Moisi MD; Keogh B; McCullough BJ; Rostad S; Newell D; Gwinn R; Foltz G; Mayberg M; Aguedan B; Good V; Fouke SJ J Neurosurg; 2017 Apr; 126(4):1220-1226. PubMed ID: 27285539 [TBL] [Abstract][Full Text] [Related]
4. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Park YW; Oh J; You SC; Han K; Ahn SS; Choi YS; Chang JH; Kim SH; Lee SK Eur Radiol; 2019 Aug; 29(8):4068-4076. PubMed ID: 30443758 [TBL] [Abstract][Full Text] [Related]
5. Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic features. Yang L; Wang T; Zhang J; Kang S; Xu S; Wang K BMC Med Imaging; 2024 Mar; 24(1):56. PubMed ID: 38443817 [TBL] [Abstract][Full Text] [Related]
6. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI. Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449 [TBL] [Abstract][Full Text] [Related]
7. A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: A multicentre study. Zhang J; Yao K; Liu P; Liu Z; Han T; Zhao Z; Cao Y; Zhang G; Zhang J; Tian J; Zhou J EBioMedicine; 2020 Aug; 58():102933. PubMed ID: 32739863 [TBL] [Abstract][Full Text] [Related]
8. Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas. Zhao Z; Nie C; Zhao L; Xiao D; Zheng J; Zhang H; Yan P; Jiang X; Zhao H Eur Radiol; 2024 Apr; 34(4):2468-2479. PubMed ID: 37812296 [TBL] [Abstract][Full Text] [Related]
9. MRI predictors for brain invasion in meningiomas. Ong T; Bharatha A; Alsufayan R; Das S; Lin AW Neuroradiol J; 2021 Feb; 34(1):3-7. PubMed ID: 32924772 [TBL] [Abstract][Full Text] [Related]
10. Predicting the risk of postoperative recurrence and high-grade histology in patients with intracranial meningiomas using routine preoperative MRI. Spille DC; Adeli A; Sporns PB; Heß K; Streckert EMS; Brokinkel C; Mawrin C; Paulus W; Stummer W; Brokinkel B Neurosurg Rev; 2021 Apr; 44(2):1109-1117. PubMed ID: 32328854 [TBL] [Abstract][Full Text] [Related]
11. Role of MR Morphology and Diffusion-Weighted Imaging in the Evaluation of Meningiomas: Radio-Pathologic Correlation. Ranabhat K; Bishokarma S; Agrawal P; Shrestha P; Panth R; Ghimire RK JNMA J Nepal Med Assoc; 2019; 57(215):37-44. PubMed ID: 31080244 [TBL] [Abstract][Full Text] [Related]
12. 3D Fast Spin-Echo T1 Black-Blood Imaging for the Preoperative Detection of Venous Sinus Invasion by Meningioma : Comparison with Contrast-Enhanced MRV. Wang D; Lu Y; Yin B; Chen M; Geng D; Liu L; Wen J; Zhong P; Li Y Clin Neuroradiol; 2019 Mar; 29(1):65-73. PubMed ID: 29071386 [TBL] [Abstract][Full Text] [Related]
13. Meningioma Consistency Can Be Defined by Combining the Radiomic Features of Magnetic Resonance Imaging and Ultrasound Elastography. A Pilot Study Using Machine Learning Classifiers. Cepeda S; Arrese I; García-García S; Velasco-Casares M; Escudero-Caro T; Zamora T; Sarabia R World Neurosurg; 2021 Feb; 146():e1147-e1159. PubMed ID: 33259973 [TBL] [Abstract][Full Text] [Related]
14. New Software for Preoperative Diagnostics of Meningeal Tumor Histologic Types. Krivoshapkin AL; Sergeev GS; Kalneus LE; Gaytan AS; Murtazin VI; Kurbatov VP; Volkov AM; Kostromskaya DV; Pyatov SM; Amelin ME; Duishobaev AR World Neurosurg; 2016 Jun; 90():123-132. PubMed ID: 26926798 [TBL] [Abstract][Full Text] [Related]
15. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study. Hamerla G; Meyer HJ; Schob S; Ginat DT; Altman A; Lim T; Gihr GA; Horvath-Rizea D; Hoffmann KT; Surov A Magn Reson Imaging; 2019 Nov; 63():244-249. PubMed ID: 31425811 [TBL] [Abstract][Full Text] [Related]
16. Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study. Chen H; Li S; Zhang Y; Liu L; Lv X; Yi Y; Ruan G; Ke C; Feng Y Eur Radiol; 2022 Oct; 32(10):7248-7259. PubMed ID: 35420299 [TBL] [Abstract][Full Text] [Related]
17. MRI- and DWI-Based Radiomics Features for Preoperatively Predicting Meningioma Sinus Invasion. Gui Y; Chen F; Ren J; Wang L; Chen K; Zhang J J Imaging Inform Med; 2024 Jun; 37(3):1054-1066. PubMed ID: 38351221 [TBL] [Abstract][Full Text] [Related]
18. Value of MRI Radiomics Based on Enhanced T1WI Images in Prediction of Meningiomas Grade. Chu H; Lin X; He J; Pang P; Fan B; Lei P; Guo D; Ye C Acad Radiol; 2021 May; 28(5):687-693. PubMed ID: 32418785 [TBL] [Abstract][Full Text] [Related]
19. Preoperative Prediction of Solitary Fibrous Tumor/Hemangiopericytoma and Angiomatous Meningioma Using Magnetic Resonance Imaging Texture Analysis. Kanazawa T; Minami Y; Jinzaki M; Toda M; Yoshida K; Sasaki H World Neurosurg; 2018 Dec; 120():e1208-e1216. PubMed ID: 30240864 [TBL] [Abstract][Full Text] [Related]
20. Accuracy of Radiomics-Based Feature Analysis on Multiparametric Magnetic Resonance Images for Noninvasive Meningioma Grading. Laukamp KR; Shakirin G; Baeßler B; Thiele F; Zopfs D; Große Hokamp N; Timmer M; Kabbasch C; Perkuhn M; Borggrefe J World Neurosurg; 2019 Dec; 132():e366-e390. PubMed ID: 31476455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]