These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32932140)

  • 1. Photocrosslinkable nanocomposite ink for printing strong, biodegradable and bioactive bone graft.
    Yang Y; Zhang Q; Xu T; Zhang H; Zhang M; Lu L; Hao Y; Fuh JH; Zhao X
    Biomaterials; 2020 Dec; 263():120378. PubMed ID: 32932140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toughening 3D printed biomimetic hydroxyapatite scaffolds: Polycaprolactone-based self-hardening inks.
    Del-Mazo-Barbara L; Johansson L; Tampieri F; Ginebra MP
    Acta Biomater; 2024 Mar; 177():506-524. PubMed ID: 38360290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mSLA-based 3D printing of acrylated epoxidized soybean oil - nano-hydroxyapatite composites for bone repair.
    Mondal D; Haghpanah Z; Huxman CJ; Tanter S; Sun D; Gorbet M; Willett TL
    Mater Sci Eng C Mater Biol Appl; 2021 Nov; 130():112456. PubMed ID: 34702532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds.
    Ji S; Dube K; Chesterman JP; Fung SL; Liaw CY; Kohn J; Guvendiren M
    Biomater Sci; 2019 Jan; 7(2):560-570. PubMed ID: 30534726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acrylated epoxidized soybean oil/hydroxyapatite-based nanocomposite scaffolds prepared by additive manufacturing for bone tissue engineering.
    Mondal D; Srinivasan A; Comeau P; Toh YC; Willett TL
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111400. PubMed ID: 33255003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering.
    Müller M; Fisch P; Molnar M; Eggert S; Binelli M; Maniura-Weber K; Zenobi-Wong M
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110510. PubMed ID: 31924006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds.
    Sultan S; Mathew AP
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization.
    McCracken JM; Rauzan BM; Kjellman JCE; Kandel ME; Liu YH; Badea A; Miller LA; Rogers SA; Popescu G; Nuzzo RG
    Adv Healthc Mater; 2019 Jan; 8(1):e1800788. PubMed ID: 30565889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering natural based nanocomposite inks via interface interaction for extrusion 3D printing.
    Maia JR; Castanheira E; Rodrigues JMM; Sobreiro-Almeida R; Mano JF
    Methods; 2023 Apr; 212():39-57. PubMed ID: 36934614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair.
    Saber-Samandari S; Yekta H; Ahmadi S; Alamara K
    Int J Biol Macromol; 2018 Jan; 106():481-488. PubMed ID: 28797809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning mechanical reinforcement and bioactivity of 3D printed ternary nanocomposites by interfacial peptide-polymer conjugates.
    Bas O; Hanßke F; Lim J; Ravichandran A; Kemnitz E; Teoh SH; Hutmacher DW; Börner HG
    Biofabrication; 2019 Jun; 11(3):035028. PubMed ID: 30645987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of biomimetic bone grafts with multi-material 3D printing.
    Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E
    Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extrusion-Based 3D Printing of Photocrosslinkable Chitosan Inks.
    García-García A; Pérez-Álvarez L; Ruiz-Rubio L; Larrea-Sebal A; Martin C; Vilas-Vilela JL
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocomposite bioink exploits dynamic covalent bonds between nanoparticles and polysaccharides for precision bioprinting.
    Lee M; Bae K; Levinson C; Zenobi-Wong M
    Biofabrication; 2020 Mar; 12(2):025025. PubMed ID: 32078578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing of complex GelMA-based scaffolds with nanoclay.
    Gao Q; Niu X; Shao L; Zhou L; Lin Z; Sun A; Fu J; Chen Z; Hu J; Liu Y; He Y
    Biofabrication; 2019 Apr; 11(3):035006. PubMed ID: 30836349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4D-Printable Photocrosslinkable Polyurethane-Based Inks for Tissue Scaffold and Actuator Applications.
    Goodarzi Hosseinabadi H; Biswas A; Bhusal A; Yousefinejad A; Lall A; Zimmermann WH; Miri AK; Ionov L
    Small; 2024 Feb; 20(6):e2306387. PubMed ID: 37771189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.
    Hung KC; Tseng CS; Dai LG; Hsu SH
    Biomaterials; 2016 Mar; 83():156-68. PubMed ID: 26774563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.