These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32932140)

  • 21. Assessment of Naturally Sourced Mineral Clays for the 3D Printing of Biopolymer-Based Nanocomposite Inks.
    Alexa RL; Iovu H; Trica B; Zaharia C; Serafim A; Alexandrescu E; Radu IC; Vlasceanu G; Preda S; Ninciuleanu CM; Ianchis R
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33799601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy.
    Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J
    J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coaxial micro-extrusion of a calcium phosphate ink with aqueous solvents improves printing stability, structure fidelity and mechanical properties.
    Bagnol R; Sprecher C; Peroglio M; Chevalier J; Mahou R; Büchler P; Richards G; Eglin D
    Acta Biomater; 2021 Apr; 125():322-332. PubMed ID: 33631396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Triethyleneglycol dimethacrylate addition improves the 3D-printability and construct properties of a GelMA-nHA composite system towards tissue engineering applications.
    Comeau PA; Willett TL
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110937. PubMed ID: 32409083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.
    Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.
    Wang C; Zhao Q; Wang M
    Biofabrication; 2017 Jun; 9(2):025031. PubMed ID: 28589918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue.
    Shahbazi S; Moztarzadeh F; Sadeghi GM; Jafari Y
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1201-9. PubMed ID: 27612818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell-Free Bilayered Porous Scaffolds for Osteochondral Regeneration Fabricated by Continuous 3D-Printing Using Nascent Physical Hydrogel as Ink.
    Gao J; Ding X; Yu X; Chen X; Zhang X; Cui S; Shi J; Chen J; Yu L; Chen S; Ding J
    Adv Healthc Mater; 2021 Feb; 10(3):e2001404. PubMed ID: 33225617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.
    Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG
    Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical properties of nanocomposite biomaterials improved by extrusion during direct ink writing.
    Mondal D; Willett TL
    J Mech Behav Biomed Mater; 2020 Apr; 104():103653. PubMed ID: 32174411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Composite PLA/PEG/nHA/Dexamethasone Scaffold Prepared by 3D Printing for Bone Regeneration.
    Li X; Wang Y; Wang Z; Qi Y; Li L; Zhang P; Chen X; Huang Y
    Macromol Biosci; 2018 Jun; 18(6):e1800068. PubMed ID: 29687630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element evaluations of the mechanical properties of polycaprolactone/hydroxyapatite scaffolds by direct ink writing: Effects of pore geometry.
    Zhang B; Guo L; Chen H; Ventikos Y; Narayan RJ; Huang J
    J Mech Behav Biomed Mater; 2020 Apr; 104():103665. PubMed ID: 32174423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a 3D printable and highly stretchable ternary organic-inorganic nanocomposite hydrogel.
    Hu C; Haider MS; Hahn L; Yang M; Luxenhofer R
    J Mater Chem B; 2021 Jun; 9(22):4535-4545. PubMed ID: 34037651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface Engineered Biomimetic Inks Based on UV Cross-Linkable Wood Biopolymers for 3D Printing.
    Xu W; Zhang X; Yang P; Långvik O; Wang X; Zhang Y; Cheng F; Österberg M; Willför S; Xu C
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12389-12400. PubMed ID: 30844234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering.
    Kim BS; Yang SS; Kim CS
    Colloids Surf B Biointerfaces; 2018 Oct; 170():421-429. PubMed ID: 29957531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.
    Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.