These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 32932172)
1. Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model. Golafshan N; Vorndran E; Zaharievski S; Brommer H; Kadumudi FB; Dolatshahi-Pirouz A; Gbureck U; van Weeren R; Castilho M; Malda J Biomaterials; 2020 Dec; 261():120302. PubMed ID: 32932172 [TBL] [Abstract][Full Text] [Related]
2. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692 [TBL] [Abstract][Full Text] [Related]
3. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo. Kim JA; Lim J; Naren R; Yun HS; Park EK Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019 [TBL] [Abstract][Full Text] [Related]
4. Long-Term in Vivo Performance of Low-Temperature 3D-Printed Bioceramics in an Equine Model. Bolaños RV; Castilho M; de Grauw J; Cokelaere S; Plomp S; Groll J; van Weeren PR; Gbureck U; Malda J ACS Biomater Sci Eng; 2020 Mar; 6(3):1681-1689. PubMed ID: 33455387 [TBL] [Abstract][Full Text] [Related]
5. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds. Meininger S; Moseke C; Spatz K; März E; Blum C; Ewald A; Vorndran E Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1145-1158. PubMed ID: 30812998 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution. Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972 [TBL] [Abstract][Full Text] [Related]
7. Orthotopic Bone Regeneration within 3D Printed Bioceramic Scaffolds with Region-Dependent Porosity Gradients in an Equine Model. Diloksumpan P; Bolaños RV; Cokelaere S; Pouran B; de Grauw J; van Rijen M; van Weeren R; Levato R; Malda J Adv Healthc Mater; 2020 May; 9(10):e1901807. PubMed ID: 32324336 [TBL] [Abstract][Full Text] [Related]
8. The effects of a 3D-printed magnesium-/strontium-doped calcium silicate scaffold on regulation of bone regeneration via dual-stimulation of the AKT and WNT signaling pathways. Lin YH; Lee AK; Ho CC; Fang MJ; Kuo TY; Shie MY Biomater Adv; 2022 Feb; 133():112660. PubMed ID: 35034814 [TBL] [Abstract][Full Text] [Related]
9. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study. Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025 [TBL] [Abstract][Full Text] [Related]
10. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation. Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300 [TBL] [Abstract][Full Text] [Related]
11. Magnesium phosphate ceramics incorporating a novel indene compound promote osteoblast differentiation in vitro and bone regeneration in vivo. Kim JA; Yun HS; Choi YA; Kim JE; Choi SY; Kwon TG; Kim YK; Kwon TY; Bae MA; Kim NJ; Bae YC; Shin HI; Park EK Biomaterials; 2018 Mar; 157():51-61. PubMed ID: 29245051 [TBL] [Abstract][Full Text] [Related]
12. Carboxymethyl carrageenan immobilized on 3D-printed polycaprolactone scaffold for the adsorption of calcium phosphate/strontium phosphate adapted to bone regeneration. Ataie M; Nourmohammadi J; Seyedjafari E Int J Biol Macromol; 2022 May; 206():861-874. PubMed ID: 35314263 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862 [TBL] [Abstract][Full Text] [Related]
14. Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds. Bose S; Banerjee D; Robertson S; Vahabzadeh S Ann Biomed Eng; 2018 Sep; 46(9):1241-1253. PubMed ID: 29728785 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration. Nadi A; Khodaei M; Javdani M; Mirzaei SA; Soleimannejad M; Tayebi L; Asadpour S Int J Biol Macromol; 2022 Oct; 219():1319-1336. PubMed ID: 36055598 [TBL] [Abstract][Full Text] [Related]
16. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. Tarafder S; Dernell WS; Bandyopadhyay A; Bose S J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131 [TBL] [Abstract][Full Text] [Related]
17. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds. Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404 [TBL] [Abstract][Full Text] [Related]
18. A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration. Wang Z; Hui A; Zhao H; Ye X; Zhang C; Wang A; Zhang C Int J Nanomedicine; 2020; 15():6945-6960. PubMed ID: 33061361 [TBL] [Abstract][Full Text] [Related]
19. 3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth. Zhang Y; Yu W; Ba Z; Cui S; Wei J; Li H Int J Nanomedicine; 2018; 13():5433-5447. PubMed ID: 30271139 [TBL] [Abstract][Full Text] [Related]
20. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks. Diaz-Gomez L; Elizondo ME; Kontoyiannis PD; Koons GL; Dacunha-Marinho B; Zhang X; Ajayan P; Jansen JA; Melchiorri AJ; Mikos AG Tissue Eng Part C Methods; 2020 Jun; 26(6):292-305. PubMed ID: 32326874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]