These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32932512)

  • 1. 16-QAM probabilistic constellation shaping by adaptively modifying the distribution of transmitted symbols based on errors at the receiver.
    Fallahpour A; Alishahi F; Minoofar A; Zou K; Almaiman A; Liao P; Zhou H; Tur M; Willner AE
    Opt Lett; 2020 Sep; 45(18):5283-5286. PubMed ID: 32932512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive feedback-driven probabilistic shaping for high-order modulation formats in a fiber-THz seamless integration system at 320 GHz.
    Liu X; Zhang J; Zhu M; Zhang J; Tong W; Xin Z; Hua B; Cai Y; Lei M; Liu B; Yu J
    Opt Lett; 2023 Dec; 48(24):6557-6560. PubMed ID: 38099798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wide range rate adaptation of QAM-based probabilistic constellation shaping using a fixed FEC with blind adaptive equalization.
    Arikawa M; Sato M; Hayashi K
    Opt Express; 2020 Jan; 28(2):1300-1315. PubMed ID: 32121844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the probability mass function of complex modulated signals through adaptive channel characterization.
    Zhang Z; Zhang Q; Shu C
    Opt Express; 2023 Sep; 31(20):33212-33227. PubMed ID: 37859106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probabilistically shaped coded modulation for IM/DD system.
    He Z; Bo T; Kim H
    Opt Express; 2019 Apr; 27(9):12126-12136. PubMed ID: 31052757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of Probabilistic Shaping for Nonlinear Fiber Channels with Non-Gaussian Noise.
    Hansen HE; Yankov MP; Oxenløwe LK; Forchhammer S
    Entropy (Basel); 2020 Aug; 22(8):. PubMed ID: 33286643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shaping to approach channel capacity limit.
    Hong X; Fei C; Zhang G; Du J; He S
    Opt Lett; 2019 Feb; 44(3):558-561. PubMed ID: 30702678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blind Polarization Demultiplexing of Shaped QAM Signals Assisted by Temporal Correlations.
    Bajaj V; Van de Plas R; Wahls S
    J Lightwave Technol; 2024 Jan; 42(2):560-571. PubMed ID: 38586243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic constellation shaping-aided underwater acoustic communication with vector approximate message passing iterative equalization.
    Wu X; Li D; Wu Y; Zhu M
    J Acoust Soc Am; 2023 Jul; 154(1):433-442. PubMed ID: 37477368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constellation size for probabilistic shaping under the constraint of limited ADC resolution.
    Zhang Q; Shu C
    Opt Lett; 2019 Dec; 44(23):5820-5823. PubMed ID: 31774788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance Analysis and Constellation Design for the Parallel Quadrature Spatial Modulation.
    Mohaisen M; Holoubi T; Abuhmed T
    Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carrier phase recovery friendly probabilistic shaping scheme based on a quasi-Maxwell-Boltzmann distribution model.
    Wang X; Zhang Q; Yu J; Xin X; Lv K; Gao R; Ren J; Tian F; Tian Q; Wang C; Pan X; Wang Y; Guo D; Yang L
    Opt Lett; 2020 Sep; 45(17):4883-4886. PubMed ID: 32870882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2D-to-1D constellation reforming using phase-sensitive amplifier-based constellation squeezing and shifting.
    Cui J; Ji Y; Lu GW; Wang H; Zhang M
    Opt Express; 2021 Feb; 29(3):3724-3737. PubMed ID: 33770966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-complexity amplitude-division irregular QAM formats for short-reach unamplified coherent optical systems.
    Fu M; Jiang H; Liu Q; Fan Y; Zeng X; Yi L; Hu W; Zhuge Q
    Opt Lett; 2023 Jun; 48(11):2901-2904. PubMed ID: 37262239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flipped superposed constellation design for MIMO visible-light communication systems.
    Guo X; Yuan Y; Zhao Y; Chi N
    Opt Express; 2022 Mar; 30(7):11588-11603. PubMed ID: 35473100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptively loaded IM/DD optical OFDM based on set-partitioned QAM formats.
    Zhao J; Chen LK
    Opt Express; 2017 Apr; 25(8):9368-9377. PubMed ID: 28437899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carrier recovery for M-QAM signals based on a block estimation process with Kalman filter.
    Inoue T; Namiki S
    Opt Express; 2014 Jun; 22(13):15376-87. PubMed ID: 24977798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced GF(3
    Liu T; Lin C; Djordjevic IB
    Opt Express; 2016 Jun; 24(13):13866-74. PubMed ID: 27410549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified constellation reshaping method for PAPR reduction of PDM CO-OFDM based on a SLM algorithm.
    Zou W; Huang T; Yuan J; Wang D; Li X; Cheng Z
    Appl Opt; 2019 Mar; 58(7):1800-1807. PubMed ID: 30874214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the performance of 16384QAM based on delta-sigma modulation using geometric shaping in an IMDD system.
    Zhao J; Ren J; Liu B; Mao Y; Ullah R; Wu X; Chen S; Wu Y; Zhao L; Li Z
    Opt Lett; 2023 Oct; 48(20):5253-5256. PubMed ID: 37831840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.