These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32932555)

  • 1. Form in the context of function: Fundamentals of an energy effective striding walk, the role of the plantigrade foot and its expected size.
    Croft JL; Bertram JEA
    Am J Phys Anthropol; 2020 Dec; 173(4):760-767. PubMed ID: 32932555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of plantigrady and heel-strike in the mechanics and energetics of human walking with implications for the evolution of the human foot.
    Webber JT; Raichlen DA
    J Exp Biol; 2016 Dec; 219(Pt 23):3729-3737. PubMed ID: 27903628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional kinematics of the pelvis and hind limbs in chimpanzee (Pan troglodytes) and human bipedal walking.
    O'Neill MC; Lee LF; Demes B; Thompson NE; Larson SG; Stern JT; Umberger BR
    J Hum Evol; 2015 Sep; 86():32-42. PubMed ID: 26194031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptations for bipedal walking: Musculoskeletal structure and three-dimensional joint mechanics of humans and bipedal chimpanzees (Pan troglodytes).
    O'Neill MC; Demes B; Thompson NE; Larson SG; Stern JT; Umberger BR
    J Hum Evol; 2022 Jul; 168():103195. PubMed ID: 35596976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laetoli footprints reveal bipedal gait biomechanics different from those of modern humans and chimpanzees.
    Hatala KG; Demes B; Richmond BG
    Proc Biol Sci; 2016 Aug; 283(1836):. PubMed ID: 27488647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The human foot and heel-sole-toe walking strategy: a mechanism enabling an inverted pendular gait with low isometric muscle force?
    Usherwood JR; Channon AJ; Myatt JP; Rankin JW; Hubel TY
    J R Soc Interface; 2012 Oct; 9(75):2396-402. PubMed ID: 22572024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Center of mass mechanics of chimpanzee bipedal walking.
    Demes B; Thompson NE; O'Neill MC; Umberger BR
    Am J Phys Anthropol; 2015 Mar; 156(3):422-33. PubMed ID: 25407636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The collisional geometry of economical walking predicts human leg and foot segment proportions.
    Usherwood JR
    J R Soc Interface; 2023 Mar; 20(200):20220800. PubMed ID: 36946089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functional importance of human foot muscles for bipedal locomotion.
    Farris DJ; Kelly LA; Cresswell AG; Lichtwark GA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1645-1650. PubMed ID: 30655349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chimpanzee and human midfoot motion during bipedal walking and the evolution of the longitudinal arch of the foot.
    Holowka NB; O'Neill MC; Thompson NE; Demes B
    J Hum Evol; 2017 Mar; 104():23-31. PubMed ID: 28317554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brief communication: Dynamic plantar pressure distribution during locomotion in Japanese macaques (Macaca fuscata).
    Hirasaki E; Higurashi Y; Kumakura H
    Am J Phys Anthropol; 2010 May; 142(1):149-56. PubMed ID: 20027608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forward dynamic simulation of Japanese macaque bipedal locomotion demonstrates better energetic economy in a virtualised plantigrade posture.
    Oku H; Ide N; Ogihara N
    Commun Biol; 2021 Mar; 4(1):308. PubMed ID: 33686215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Step width and frontal plane trunk motion in bipedal chimpanzee and human walking.
    Thompson NE; O'Neill MC; Holowka NB; Demes B
    J Hum Evol; 2018 Dec; 125():27-37. PubMed ID: 30502895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpreting locomotor biomechanics from the morphology of human footprints.
    Hatala KG; Wunderlich RE; Dingwall HL; Richmond BG
    J Hum Evol; 2016 Jan; 90():38-48. PubMed ID: 26767958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bipedal and quadrupedal locomotion in chimpanzees.
    Pontzer H; Raichlen DA; Rodman PS
    J Hum Evol; 2014 Jan; 66():64-82. PubMed ID: 24315239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Footprint evidence of early hominin locomotor diversity at Laetoli, Tanzania.
    McNutt EJ; Hatala KG; Miller C; Adams J; Casana J; Deane AS; Dominy NJ; Fabian K; Fannin LD; Gaughan S; Gill SV; Gurtu J; Gustafson E; Hill AC; Johnson C; Kallindo S; Kilham B; Kilham P; Kim E; Liutkus-Pierce C; Maley B; Prabhat A; Reader J; Rubin S; Thompson NE; Thornburg R; Williams-Hatala EM; Zimmer B; Musiba CM; DeSilva JM
    Nature; 2021 Dec; 600(7889):468-471. PubMed ID: 34853470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of the locomotor pattern when deviating from the characteristic heel-to-toe rolling pattern during walking.
    Mesquita RM; Catavitello G; Willems PA; Dewolf AH
    Eur J Appl Physiol; 2023 Jul; 123(7):1455-1467. PubMed ID: 36869884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Laetoli footprints and early hominin locomotor kinematics.
    Raichlen DA; Pontzer H; Sockol MD
    J Hum Evol; 2008 Jan; 54(1):112-7. PubMed ID: 17804036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of bipedal locomotion on compliant legs.
    Alexander RM
    Philos Trans R Soc Lond B Biol Sci; 1992 Oct; 338(1284):189-98. PubMed ID: 1360684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of the six major gait determinants on the vertical center of mass trajectory and the vertical ground reaction force.
    Hayot C; Sakka S; Lacouture P
    Hum Mov Sci; 2013 Apr; 32(2):279-89. PubMed ID: 23725827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.