These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32932555)

  • 21. Compliant bipedal model with the center of pressure excursion associated with oscillatory behavior of the center of mass reproduces the human gait dynamics.
    Jung CK; Park S
    J Biomech; 2014 Jan; 47(1):223-9. PubMed ID: 24161797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Foot lengthening and shortening during gait: a parameter to investigate foot function?
    Stolwijk NM; Koenraadt KL; Louwerens JW; Grim D; Duysens J; Keijsers NL
    Gait Posture; 2014 Feb; 39(2):773-7. PubMed ID: 24268319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The generation of centripetal force when walking in a circle: insight from the distribution of ground reaction forces recorded by plantar insoles.
    Turcato AM; Godi M; Giordano A; Schieppati M; Nardone A
    J Neuroeng Rehabil; 2015 Jan; 12(1):4. PubMed ID: 25576354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chimpanzee ankle and foot joint kinematics: Arboreal versus terrestrial locomotion.
    Holowka NB; O'Neill MC; Thompson NE; Demes B
    Am J Phys Anthropol; 2017 Sep; 164(1):131-147. PubMed ID: 28594068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energetics of actively powered locomotion using the simplest walking model.
    Kuo AD
    J Biomech Eng; 2002 Feb; 124(1):113-20. PubMed ID: 11871597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of bipedal walking.
    Sun S; Huang Y; Wang Q
    J Theor Biol; 2016 Jan; 388():108-18. PubMed ID: 26519906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Center of pressure trajectory during gait: a comparison of four foot positions.
    Lugade V; Kaufman K
    Gait Posture; 2014 Sep; 40(4):719-22. PubMed ID: 25052586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New method of three-dimensional analysis of bipedal locomotion for the study of displacements of the body and body-parts centers of mass in man and non-human primates: evolutionary framework.
    Tardieu C; Aurengo A; Tardieu B
    Am J Phys Anthropol; 1993 Apr; 90(4):455-76. PubMed ID: 8476004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism.
    Fernández PJ; Holowka NB; Demes B; Jungers WL
    Sci Rep; 2016 Jul; 6():30532. PubMed ID: 27464580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rethinking the evolution of the human foot: insights from experimental research.
    Holowka NB; Lieberman DE
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 30190415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics of ground reaction forces in normal and chimpanzee-like bipedal walking by humans.
    Li Y; Crompton RH; Alexander RM; Günther MM; Wang WJ
    Folia Primatol (Basel); 1996; 66(1-4):137-59. PubMed ID: 8953756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Salient features of the Maasai foot: analysis of 1,096 Maasai subjects.
    Choi JY; Suh JS; Seo L
    Clin Orthop Surg; 2014 Dec; 6(4):410-9. PubMed ID: 25436065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Body-foot geometries as revealed by perturbed obstacle position with different time constraints.
    Dugas LP; Bouyer LJ; McFadyen BJ
    Exp Brain Res; 2018 Mar; 236(3):711-720. PubMed ID: 29299643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and functional predictors of regional peak pressures under the foot during walking.
    Morag E; Cavanagh PR
    J Biomech; 1999 Apr; 32(4):359-70. PubMed ID: 10213026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bipedal gait model for precise gait recognition and optimal triggering in foot drop stimulator: a proof of concept.
    Shaikh MF; Salcic Z; Wang KI; Hu AP
    Med Biol Eng Comput; 2018 Sep; 56(9):1731-1746. PubMed ID: 29524118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bipedal animals, and their differences from humans.
    Alexander RM
    J Anat; 2004 May; 204(5):321-30. PubMed ID: 15198697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surprising trunk rotational capabilities in chimpanzees and implications for bipedal walking proficiency in early hominins.
    Thompson NE; Demes B; O'Neill MC; Holowka NB; Larson SG
    Nat Commun; 2015 Oct; 6():8416. PubMed ID: 26441046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measures of dynamic balance during level walking in healthy adult subjects: Relationship with age, anthropometry and spatio-temporal gait parameters.
    Lencioni T; Carpinella I; Rabuffetti M; Cattaneo D; Ferrarin M
    Proc Inst Mech Eng H; 2020 Feb; 234(2):131-140. PubMed ID: 31736408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Walking variations in healthy women wearing high-heeled shoes: Shoe size and heel height effects.
    Di Sipio E; Piccinini G; Pecchioli C; Germanotta M; Iacovelli C; Simbolotti C; Cruciani A; Padua L
    Gait Posture; 2018 Jun; 63():195-201. PubMed ID: 29772495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human-like external function of the foot, and fully upright gait, confirmed in the 3.66 million year old Laetoli hominin footprints by topographic statistics, experimental footprint-formation and computer simulation.
    Crompton RH; Pataky TC; Savage R; D'Août K; Bennett MR; Day MH; Bates K; Morse S; Sellers WI
    J R Soc Interface; 2012 Apr; 9(69):707-19. PubMed ID: 21775326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.