These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32932578)

  • 1. Enabling Low-Latency Bluetooth Low Energy on Energy Harvesting Batteryless Devices Using Wake-Up Radios.
    Sultania AK; Delgado C; Famaey J
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Downlink Performance Modeling and Evaluation of Batteryless Low Power BLE Node.
    Sultania AK; Delgado C; Blondia C; Famaey J
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Analysis of Addressing Mechanisms in Inter-Operable IoT Device with Low-Power Wake-Up Radio.
    Song T; Kim T
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766524
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Moreno-Cruz F; Toral-López V; Escobar-Molero A; Ruíz VU; Rivadeneyra A; Morales DP
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33138001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IEEE 802.11-Enabled Wake-Up Radio: Use Cases and Applications.
    Lopez-Aguilera E; Demirkol I; Garcia-Villegas E; Paradells J
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-Demand LoRa: Asynchronous TDMA for Energy Efficient and Low Latency Communication in IoT.
    Piyare R; Murphy AL; Magno M; Benini L
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems.
    Roy A; Klinefelter A; Yahya FB; Chen X; Gonzalez-Guerrero LP; Lukas CJ; Kamakshi DA; Boley J; Craig K; Faisal M; Oh S; Roberts NE; Shakhsheer Y; Shrivastava A; Vasudevan DP; Wentzloff DD; Calhoun BH
    IEEE Trans Biomed Circuits Syst; 2015 Dec; 9(6):862-74. PubMed ID: 26731775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constrained Flooding Based on Time Series Prediction and Lightweight GBN in BLE Mesh.
    Li J; Li M; Wang L
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bandwidth-Based Wake-Up Radio Solution through IEEE 802.11 Technology.
    Lopez-Aguilera E; Garcia-Villegas E
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance evaluation and comparative analysis of SubCarrier Modulation Wake-up Radio systems for energy-efficient wireless sensor networks.
    Oller J; Demirkol I; Casademont J; Paradells J; Gamm GU; Reindl L
    Sensors (Basel); 2013 Dec; 14(1):22-51. PubMed ID: 24451452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive Algorithms for Batteryless LoRa-Based Sensors.
    Giuliano F; Pagano A; Croce D; Vitale G; Tinnirello I
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances and Opportunities in Passive Wake-Up Radios with Wireless Energy Harvesting for the Internet of Things Applications.
    Bello H; Xiaoping Z; Nordin R; Xin J
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Communication Scheme for Bluetooth Low Energy in Large Scale Applications.
    Nikodem M; Slabicki M; Bawiec M
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Can Wake-up Radio Reduce LoRa Downlink Latency for Energy Harvesting Sensor Nodes?
    Djidi NEH; Gautier M; Courtay A; Berder O; Magno M
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33499066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges in Resource-Constrained IoT Devices: Energy and Communication as Critical Success Factors for Future IoT Deployment.
    Pereira F; Correia R; Pinho P; Lopes SI; Carvalho NB
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Power RFED Wake-Up Receiver Design for Low-Cost Wireless Sensor Network Applications.
    Galante-Sempere D; Ramos-Valido D; Lalchand Khemchandani S; Del Pino J
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. M2M Communication Assessment in Energy-Harvesting and Wake-Up Radio Assisted Scenarios Using Practical Components.
    Rinne J; Keskinen J; Berger PR; Lupo D; Valkama M
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitigation of Data Packet Loss in Bluetooth Low Energy-Based Wearable Healthcare Ecosystem.
    Tipparaju VV; Mallires KR; Wang D; Tsow F; Xian X
    Biosensors (Basel); 2021 Sep; 11(10):. PubMed ID: 34677306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Evaluation of Advertisement-Based Bluetooth Low Energy Communication.
    Nikodem M; Bawiec M
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Evaluation of Bluetooth Low Energy: A Systematic Review.
    Tosi J; Taffoni F; Santacatterina M; Sannino R; Formica D
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29236085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.