These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32932624)

  • 1. Numerical Model of SPAD-Based Direct Time-of-Flight Flash LIDAR CMOS Image Sensors.
    Tontini A; Gasparini L; Perenzoni M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling, Simulation Methods and Characterization of Photon Detection Probability in CMOS-SPAD.
    Panglosse A; Martin-Gonthier P; Marcelot O; Virmontois C; Saint-Pé O; Magnan P
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and Analysis of Capacitive Relaxation Quenching in a Single Photon Avalanche Diode (SPAD) Applied to a CMOS Image Sensor.
    Inoue A; Okino T; Koyama S; Hirose Y
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems.
    Takai I; Matsubara H; Soga M; Ohta M; Ogawa M; Yamashita T
    Sensors (Basel); 2016 Mar; 16(4):459. PubMed ID: 27043569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Background Light Rejection in SPAD-Based LiDAR Sensors by Adaptive Photon Coincidence Detection.
    Beer M; Haase JF; Ruskowski J; Kokozinski R
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle.
    Ito S; Hiratsuka S; Ohta M; Matsubara H; Ogawa M
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29320434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications.
    Padmanabhan P; Zhang C; Charbon E
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CMOS SPAD Imager with Collision Detection and 128 Dynamically Reallocating TDCs for Single-Photon Counting and 3D Time-of-Flight Imaging.
    Zhang C; Lindner S; Antolovic IM; Wolf M; Charbon E
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 250 m Direct Time-of-Flight Ranging System Based on a Synthesis of Sub-Ranging Images and a Vertical Avalanche Photo-Diodes (VAPD) CMOS Image Sensor.
    Hirose Y; Koyama S; Ishii M; Saitou S; Takemoto M; Nose Y; Inoue A; Sakata Y; Sugiura Y; Kabe T; Usuda M; Kasuga S; Mori M; Odagawa A; Tanaka T
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30373223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPADs and SiPMs Arrays for Long-Range High-Speed Light Detection and Ranging (LiDAR).
    Villa F; Severini F; Madonini F; Zappa F
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34206130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.
    Dutton NA; Gyongy I; Parmesan L; Henderson RK
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27447643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector.
    Rojalin T; Kurki L; Laaksonen T; Viitala T; Kostamovaara J; Gordon KC; Galvis L; Wachsmann-Hogiu S; Strachan CJ; Yliperttula M
    Anal Bioanal Chem; 2016 Jan; 408(3):761-74. PubMed ID: 26549117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avalanche Transients of Thick 0.35 µm CMOS Single-Photon Avalanche Diodes.
    Goll B; Steindl B; Zimmermann H
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32961756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spot Tracking and TDC Sharing in SPAD Arrays for TOF LiDAR.
    Sesta V; Severini F; Villa F; Lussana R; Zappa F; Nakamuro K; Matsui Y
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanosecond pulsed CMOS LED for all-silicon time-of-flight ranging.
    Li Z; Ram RJ
    Opt Express; 2023 Jul; 31(15):24307-24319. PubMed ID: 37475261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-photon avalanche diode fabricated in standard 55 nm bipolar-CMOS-DMOS technology with sub-20 V breakdown voltage.
    Ha WY; Park E; Eom D; Park HS; Chong D; Tan SS; Tng M; Quek E; Bruschini C; Charbon E; Choi WY; Lee MJ
    Opt Express; 2023 Apr; 31(9):13798-13805. PubMed ID: 37157258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indirect Time-of-Flight with GHz Correlation Frequency and Integrated SPAD Reaching Sub-100 µm Precision in 0.35 µm CMOS.
    Hauser M; Zimmermann H; Hofbauer M
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photon-Detection-Probability Simulation Method for CMOS Single-Photon Avalanche Diodes.
    Hsieh CA; Tsai CM; Tsui BY; Hsiao BJ; Lin SD
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31941031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distance-Resolving Raman Radar Based on a Time-Correlated CMOS Single-Photon Avalanche Diode Line Sensor.
    Kekkonen J; Nissinen J; Kostamovaara J; Nissinen I
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30248956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submerged single-photon LiDAR imaging sensor used for real-time 3D scene reconstruction in scattering underwater environments.
    Maccarone A; Drummond K; McCarthy A; Steinlehner UK; Tachella J; Garcia DA; Pawlikowska A; Lamb RA; Henderson RK; McLaughlin S; Altmann Y; Buller GS
    Opt Express; 2023 May; 31(10):16690-16708. PubMed ID: 37157743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.