These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32932709)

  • 1. Active IR Thermography Evaluation of Coating Thickness by Determining Apparent Thermal Effusivity.
    Moskovchenko A; Vavilov V; Švantner M; Muzika L; Houdková Š
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32932709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative inspection of coating thickness by flash-pulse thermography and time-power transformation evaluation.
    Švantner M; Muzika L; Houdková Š
    Appl Opt; 2020 Jun; 59(17):E29-E35. PubMed ID: 32543510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing Depth of Defects with Low Size/Depth Aspect Ratio and Low Thermal Reflection by Using Pulsed IR Thermography.
    Moskovchenko AI; Švantner M; Vavilov VP; Chulkov AO
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of thermal effusivity as a process analytical technology tool for monitoring and control of the roller compaction process.
    Ghorab MK; Chatlapalli R; Hasan S; Nagi A
    AAPS PharmSciTech; 2007 Mar; 8(1):23. PubMed ID: 17408222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Application of Infrared Thermography Non-Destructive Testing Techniques.
    Qu Z; Jiang P; Zhang W
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved long pulse excitation infrared nondestructive testing evaluation.
    Miao Z; Wu D; Gao Y; Wang Y
    Opt Express; 2023 Sep; 31(20):32987-33002. PubMed ID: 37859088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Review of Microwave Thermography Nondestructive Testing and Evaluation.
    Zhang H; Yang R; He Y; Foudazi A; Cheng L; Tian G
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28505130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of risk and benefit in thermal effusivity sensor for monitoring lubrication process in pharmaceutical product manufacturing.
    Uchiyama J; Kato Y; Uemoto Y
    Drug Dev Ind Pharm; 2014 Aug; 40(8):999-1004. PubMed ID: 23692350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting defects in marine structures by using eddy current infrared thermography.
    Swiderski W
    Appl Opt; 2016 Dec; 55(34):D17-D21. PubMed ID: 27958434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.
    Ciampa F; Mahmoodi P; Pinto F; Meo M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29462953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coating thermal diffusivity and effusivity measurement optimization using regression-based sensitivity.
    Valdes R; Bennett TD
    Rev Sci Instrum; 2015 Jan; 86(1):015108. PubMed ID: 25638123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Cooled and Uncooled IR Sensors by Means of Signal-to-Noise Ratio for NDT Diagnostics of Aerospace Grade Composites.
    Deane S; Avdelidis NP; Ibarra-Castanedo C; Zhang H; Yazdani Nezhad H; Williamson AA; Mackley T; Maldague X; Tsourdos A; Nooralishahi P
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32549370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emissivity Correction and Thermal Pattern Reconstruction in Eddy Current Pulsed Thermography.
    Li K; Tian GY; Ahmed J
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Note: Non-destructive measurement of thermal effusivity of a solid and liquid using a freestanding serpentine sensor-based 3ω technique.
    Qiu L; Zheng XH; Zhu J; Tang DW
    Rev Sci Instrum; 2011 Aug; 82(8):086110. PubMed ID: 21895288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal effusivity changes as a precursor to moist desquamation.
    Templeton A; Chu J; Sun M; Yao R; Sun J; Coon A; Bernard D; Shott S; Griem K
    Radiat Res; 2012 Oct; 178(4):295-303. PubMed ID: 22823571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Destructive Characterization of Railway Materials and Components with Infrared Thermography Technique.
    Kim J
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermographic Inspection of Internal Defects in Steel Structures: Analysis of Signal Processing Techniques in Pulsed Thermography.
    Chung Y; Shrestha R; Lee S; Kim W
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal effusivity: a promising imaging biomarker to predict radiation-induced skin injuries.
    Chu J; Sun J; Templeton A; Yao R; Griem K
    Health Phys; 2012 Aug; 103(2):204-9. PubMed ID: 22951481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the Dispersion of Nanoparticles in a Nanocomposite with an Ultra-Low Fill Content Using a Novel Non-Destructive Evaluation Technique.
    Montinaro N; Fustaino M; Bellisario D; Quadrini F; Santo L; Pantano A
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive Models for the Characterization of Internal Defects in Additive Materials from Active Thermography Sequences Supported by Machine Learning Methods.
    Rodríguez-Martín M; Fueyo JG; Gonzalez-Aguilera D; Madruga FJ; García-Martín R; Muñóz ÁL; Pisonero J
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32709017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.