BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

671 related articles for article (PubMed ID: 32932981)

  • 21. Thrombolome and Its Emerging Role in Chronic Kidney Diseases.
    Fryc J; Naumnik B
    Toxins (Basel); 2021 Mar; 13(3):. PubMed ID: 33803899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Gut-Derived Protein-Bound Uremic Toxins in Cardiorenal Syndrome and Potential Treatment Modalities.
    Lekawanvijit S
    Circ J; 2015; 79(10):2088-97. PubMed ID: 26346172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gut microbiota in chronic kidney disease.
    Cigarran Guldris S; González Parra E; Cases Amenós A
    Nefrologia; 2017; 37(1):9-19. PubMed ID: 27553986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dietary Fibre Intake Is Associated with Serum Levels of Uraemic Toxins in Children with Chronic Kidney Disease.
    El Amouri A; Snauwaert E; Foulon A; Vande Moortel C; Van Dyck M; Van Hoeck K; Godefroid N; Glorieux G; Van Biesen W; Vande Walle J; Raes A; Eloot S
    Toxins (Basel); 2021 Mar; 13(3):. PubMed ID: 33808581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From the gastrointestinal tract (GIT) to the kidneys: live bacterial cultures (probiotics) mediating reductions of uremic toxin levels via free radical signaling.
    Vitetta L; Linnane AW; Gobe GC
    Toxins (Basel); 2013 Nov; 5(11):2042-57. PubMed ID: 24212182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of prebiotic (fructooligosaccharide) on uremic toxins of chronic kidney disease patients: a randomized controlled trial.
    Ramos CI; Armani RG; Canziani MEF; Dalboni MA; Dolenga CJR; Nakao LS; Campbell KL; Cuppari L
    Nephrol Dial Transplant; 2019 Nov; 34(11):1876-1884. PubMed ID: 29939302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Challenges of reducing protein-bound uremic toxin levels in chronic kidney disease and end stage renal disease.
    Faria M; de Pinho MN
    Transl Res; 2021 Mar; 229():115-134. PubMed ID: 32891787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intestinal Chelators, Sorbants, and Gut-Derived Uremic Toxins.
    Laville SM; Massy ZA; Kamel S; Chillon JM; Choukroun G; Liabeuf S
    Toxins (Basel); 2021 Jan; 13(2):. PubMed ID: 33530404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Fecal Microbiota Transplantation on Composition in Mice with CKD.
    Barba C; Soulage CO; Caggiano G; Glorieux G; Fouque D; Koppe L
    Toxins (Basel); 2020 Nov; 12(12):. PubMed ID: 33255454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting the gut microbial metabolic pathway with small molecules decreases uremic toxin production.
    Wang Y; Li J; Chen C; Lu J; Yu J; Xu X; Peng Y; Zhang S; Jiang S; Guo J; Duan J
    Gut Microbes; 2020 Nov; 12(1):1-19. PubMed ID: 33016221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein-Bound Uremic Toxins and Immunity.
    Rocchetti MT; Cosola C; Ranieri E; Gesualdo L
    Methods Mol Biol; 2021; 2325():215-227. PubMed ID: 34053061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uremic Vascular Calcification: The Pathogenic Roles and Gastrointestinal Decontamination of Uremic Toxins.
    Chao CT; Lin SH
    Toxins (Basel); 2020 Dec; 12(12):. PubMed ID: 33371477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring binding characteristics and the related competition of different protein-bound uremic toxins.
    Deltombe O; de Loor H; Glorieux G; Dhondt A; Van Biesen W; Meijers B; Eloot S
    Biochimie; 2017 Aug; 139():20-26. PubMed ID: 28528271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target.
    Ramezani A; Massy ZA; Meijers B; Evenepoel P; Vanholder R; Raj DS
    Am J Kidney Dis; 2016 Mar; 67(3):483-98. PubMed ID: 26590448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel intestinal dialysis interventions and microbiome modulation to control uremia.
    Sumida K; Lau WL; Kalantar-Zadeh K; Kovesdy CP
    Curr Opin Nephrol Hypertens; 2022 Jan; 31(1):82-91. PubMed ID: 34846313
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fecal Microbiota Transplantation in Reducing Uremic Toxins Accumulation in Kidney Disease: Current Understanding and Future Perspectives.
    Caggiano G; Stasi A; Franzin R; Fiorentino M; Cimmarusti MT; Deleonardis A; Palieri R; Pontrelli P; Gesualdo L
    Toxins (Basel); 2023 Jan; 15(2):. PubMed ID: 36828429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Altered microbiome in chronic kidney disease: systemic effects of gut-derived uremic toxins.
    Lau WL; Savoj J; Nakata MB; Vaziri ND
    Clin Sci (Lond); 2018 Mar; 132(5):509-522. PubMed ID: 29523750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved dialytic removal of protein-bound uremic toxins by intravenous lipid emulsion in chronic kidney disease rats.
    Shi Y; Zhang Y; Tian H; Wang Y; Shen Y; Zhu Q; Ding F
    Nephrol Dial Transplant; 2019 Nov; 34(11):1842-1852. PubMed ID: 31071223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The clinical impact of gut microbiota in chronic kidney disease.
    Kim SM; Song IH
    Korean J Intern Med; 2020 Nov; 35(6):1305-1316. PubMed ID: 32872729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uremic Toxins and Blood Purification: A Review of Current Evidence and Future Perspectives.
    Magnani S; Atti M
    Toxins (Basel); 2021 Mar; 13(4):. PubMed ID: 33808345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.