BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 32933060)

  • 1.
    Gan Y; Xu D; Zhang J; Wang Z; Wang S; Guo H; Zhang K; Li Y; Wang Y
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32933060
    [No Abstract]   [Full Text] [Related]  

  • 2. [Optimization for supercritical CO2 extraction with response surface methodology and component analysis of Sapindus mukorossi oil].
    Wu Y; Xiao XY; Ge FH
    Zhong Yao Cai; 2012 Feb; 35(2):300-3. PubMed ID: 22822678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Optimization for supercritical CO2 extraction with response surface methodology of Prunus armeniaca oil].
    Chen FF; Wu Y; Ge FH
    Zhong Yao Cai; 2012 Mar; 35(3):479-82. PubMed ID: 22876691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central composite design for the optimization of supercritical carbon dioxide fluid extraction of fatty acids from Borago officinalis L. flower.
    Ramandi NF; Najafi NM; Raofie F; Ghasemi E
    J Food Sci; 2011; 76(9):C1262-6. PubMed ID: 22416687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Supercritical Carbon Dioxide Extraction of Eucommia ulmoides Seed Oil and Quality Evaluation of the Oil.
    Zhang ZS; Liu YL; Che LM
    J Oleo Sci; 2018 Mar; 67(3):255-263. PubMed ID: 29459511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploitation of HPLC Analytical Method for Simultaneous Determination of Six Principal Unsaturated Fatty Acids in
    Wang S; Gan Y; Kan H; Mao X; Wang Y
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33477507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercritical carbon dioxide extraction of the Oak Silkworm (Antheraea pernyi) Pupal Oil: process optimization and composition determination.
    Pan WJ; Liao AM; Zhang JG; Dong Z; Wei ZJ
    Int J Mol Sci; 2012; 13(2):2354-2367. PubMed ID: 22408458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology.
    Wei ZJ; Liao AM; Zhang HX; Liu J; Jiang ST
    Bioresour Technol; 2009 Sep; 100(18):4214-9. PubMed ID: 19414250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods.
    Szentmihályi K; Vinkler P; Lakatos B; Illés V; Then M
    Bioresour Technol; 2002 Apr; 82(2):195-201. PubMed ID: 12003323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of omega 3-rich oils from underutilized chia seeds. Comparison between supercritical fluid and pressurized liquid extraction methods.
    Villanueva-Bermejo D; Calvo MV; Castro-Gómez P; Fornari T; Fontecha J
    Food Res Int; 2019 Jan; 115():400-407. PubMed ID: 30599958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Supercritical CO2 extraction of fatty oils from bee pollen and its GC-MS analysis].
    Lei H; Shi Q; Ge F; Pan J
    Zhong Yao Cai; 2004 Mar; 27(3):177-80. PubMed ID: 15272780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of CO
    Espinosa Álvarez C; Vardanega R; Salinas-Fuentes F; Palma Ramírez J; Bugueño Muñoz W; Jiménez-Rondón D; Meireles MAA; Cerezal Mezquita P; Ruiz-Domínguez MC
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33371297
    [No Abstract]   [Full Text] [Related]  

  • 13. Separation of γ-linolenic and other polyunsaturated fatty acids from Boraginaceae via supercritical CO2.
    Ghoreishi SM; Mardani E; Ghaziaskar HS
    J Sep Sci; 2011 Jan; 34(2):233-40. PubMed ID: 21246730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of supercritical fluid extraction and ultrasound-assisted extraction of fatty acids from quince (Cydonia oblonga Miller) seed using response surface methodology and central composite design.
    Daneshvand B; Ara KM; Raofie F
    J Chromatogr A; 2012 Aug; 1252():1-7. PubMed ID: 22824221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and Optimization of the Isolation of Blackcurrant and Black Cumin Seeds Oils Using Supercritical Fluid Extraction.
    Mazurek B; Wójciak M; Kostrzewa D; Kondracka M
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Extraction of ω-3 Fatty Acids from
    Leone GP; Balducchi R; Mehariya S; Martino M; Larocca V; Di Sanzo G; Iovine A; Casella P; Marino T; Karatza D; Chianese S; Musmarra D; Molino A
    Molecules; 2019 Jun; 24(13):. PubMed ID: 31261888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [High performance liquid chromatographic method for determination of active components in lithospermum oil and its application to process optimization of lithospermum oil prepared by supercritical fluid extraction].
    Shen J; Shen W; Cai X; Wang J; Zheng M
    Se Pu; 2021 Jul; 39(7):708-714. PubMed ID: 34227368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercritical CO
    Cvitković D; Škarica I; Dragović-Uzelac V; Balbino S
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of cyclic deoxyguanosine adducts from omega-3 and omega-6 polyunsaturated fatty acids under oxidative conditions.
    Pan J; Chung FL
    Chem Res Toxicol; 2002 Mar; 15(3):367-72. PubMed ID: 11896684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercritical CO
    Jerković I; Molnar M; Vidović S; Vladić J; Jokić S
    Phytochem Anal; 2017 Nov; 28(6):558-566. PubMed ID: 28707355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.