BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 32933142)

  • 1. In Vitro Selection of an ATP-Binding TNA Aptamer.
    Zhang L; Chaput JC
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32933142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro selection of an XNA aptamer capable of small-molecule recognition.
    Rangel AE; Chen Z; Ayele TM; Heemstra JM
    Nucleic Acids Res; 2018 Sep; 46(16):8057-8068. PubMed ID: 30085205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redesigning the Genetic Polymers of Life.
    Chaput JC
    Acc Chem Res; 2021 Feb; 54(4):1056-1065. PubMed ID: 33533593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase.
    Dunn MR; Chaput JC
    Chembiochem; 2016 Oct; 17(19):1804-1808. PubMed ID: 27383648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic Synthesis of TNA Protects DNA Nanostructures.
    Qin B; Wang Q; Wang Y; Han F; Wang H; Jiang S; Yu H
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202317334. PubMed ID: 38323479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro selection of BNA (LNA) aptamers.
    Kuwahara M; Obika S
    Artif DNA PNA XNA; 2013; 4(2):39-48. PubMed ID: 24044051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding the Horizon of the Xeno Nucleic Acid Space: Threose Nucleic Acids with Increased Information Storage.
    Depmeier H; Kath-Schorr S
    J Am Chem Soc; 2024 Mar; 146(11):7743-7751. PubMed ID: 38442021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of Functionally Enhanced α-l-Threofuranosyl Nucleic Acid Aptamers.
    McCloskey CM; Li Q; Yik EJ; Chim N; Ngor AK; Medina E; Grubisic I; Co Ting Keh L; Poplin R; Chaput JC
    ACS Synth Biol; 2021 Nov; 10(11):3190-3199. PubMed ID: 34739228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies.
    Lipi F; Chen S; Chakravarthy M; Rakesh S; Veedu RN
    RNA Biol; 2016 Dec; 13(12):1232-1245. PubMed ID: 27715478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and polymerase recognition of a pyrrolocytidine TNA triphosphate.
    Mei H; Wang Y; Yik EJ; Chaput JC
    Biopolymers; 2021 Jan; 112(1):e23388. PubMed ID: 32615644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermostability Trends of TNA:DNA Duplexes Reveal Strong Purine Dependence.
    Lackey HH; Peterson EM; Chen Z; Harris JM; Heemstra JM
    ACS Synth Biol; 2019 May; 8(5):1144-1152. PubMed ID: 30964657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing aptamer function and stability via in vitro selection using modified nucleic acids.
    Meek KN; Rangel AE; Heemstra JM
    Methods; 2016 Aug; 106():29-36. PubMed ID: 27012179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An In Vitro Selection Protocol for Threose Nucleic Acid (TNA) Using DNA Display.
    Dunn MR; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2014 Jun; 57():9.8.1-19. PubMed ID: 24961723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating TNA stability under simulated physiological conditions.
    Culbertson MC; Temburnikar KW; Sau SP; Liao JY; Bala S; Chaput JC
    Bioorg Med Chem Lett; 2016 May; 26(10):2418-2421. PubMed ID: 27080186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and enzymatic incorporation of α-L-threofuranosyl adenine triphosphate (tATP).
    Zhang S; Chaput JC
    Bioorg Med Chem Lett; 2013 Mar; 23(5):1447-9. PubMed ID: 23352269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Scalable Synthesis of α-L-Threose Nucleic Acid Monomers.
    Sau SP; Fahmi NE; Liao JY; Bala S; Chaput JC
    J Org Chem; 2016 Mar; 81(6):2302-7. PubMed ID: 26895480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of threose nucleic acid (TNA) triphosphates and oligonucleotides by polymerase-mediated primer extension.
    Zhang S; Yu H; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2013 Mar; Chapter 4():4.54.1-4.54.17. PubMed ID: 23512696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A parallel stranded G-quadruplex composed of threose nucleic acid (TNA).
    Liao JY; Anosova I; Bala S; Van Horn WD; Chaput JC
    Biopolymers; 2017 Mar; 107(3):. PubMed ID: 27718227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid one-step selection method for generating nucleic acid aptamers: development of a DNA aptamer against α-bungarotoxin.
    Lauridsen LH; Shamaileh HA; Edwards SL; Taran E; Veedu RN
    PLoS One; 2012; 7(7):e41702. PubMed ID: 22860007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for Improving Aptamer Binding Affinity.
    Hasegawa H; Savory N; Abe K; Ikebukuro K
    Molecules; 2016 Mar; 21(4):421. PubMed ID: 27043498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.