These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32933243)

  • 1. Microparticle-Assisted Precipitation Screening Method for Robust Drug Target Identification.
    Lyu J; Ruan C; Zhang X; Wang Y; Li K; Ye M
    Anal Chem; 2020 Oct; 92(20):13912-13921. PubMed ID: 32933243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical stress induced protein precipitation method for drug target screening.
    Lyu J; Wang Y; Ruan C; Zhang X; Li K; Ye M
    Anal Chim Acta; 2021 Jul; 1168():338612. PubMed ID: 34051997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precipitate-Supported Thermal Proteome Profiling Coupled with Deep Learning for Comprehensive Screening of Drug Target Proteins.
    Ruan C; Ning W; Liu Z; Zhang X; Fang Z; Li Y; Dang Y; Xue Y; Ye M
    ACS Chem Biol; 2022 Jan; 17(1):252-262. PubMed ID: 34989232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix Thermal Shift Assay for Fast Construction of Multidimensional Ligand-Target Space.
    Ruan C; Wang Y; Zhang X; Lyu J; Zhang N; Ma Y; Shi C; Qu G; Ye M
    Anal Chem; 2022 May; 94(17):6482-6490. PubMed ID: 35442643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkylation of Staurosporine to Derive a Kinase Probe for Fluorescence Applications.
    Disney AJ; Kellam B; Dekker LV
    ChemMedChem; 2016 May; 11(9):972-9. PubMed ID: 27008372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Recent advances in protein precipitation-based methods for drug-target screening].
    Liu T; Qin WJ; Yang HJ
    Se Pu; 2024 Jul; 42(7):613-622. PubMed ID: 38966970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tuned affinity-based staurosporine probe for in situ profiling of protein kinases.
    Cheng X; Li L; Uttamchandani M; Yao SQ
    Chem Commun (Camb); 2014 Mar; 50(22):2851-3. PubMed ID: 24496501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparison of Two Stability Proteomics Methods for Drug Target Identification in OnePot 2D Format.
    Xu Y; West GM; Abdelmessih M; Troutman MD; Everley RA
    ACS Chem Biol; 2021 Aug; 16(8):1445-1455. PubMed ID: 34374519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome-wide discovery of unknown ATP-binding proteins and kinase inhibitor target proteins using an ATP probe.
    Adachi J; Kishida M; Watanabe S; Hashimoto Y; Fukamizu K; Tomonaga T
    J Proteome Res; 2014 Dec; 13(12):5461-70. PubMed ID: 25230287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome profiling reveals potential cellular targets of staurosporine using a clickable cell-permeable probe.
    Shi H; Cheng X; Sze SK; Yao SQ
    Chem Commun (Camb); 2011 Oct; 47(40):11306-8. PubMed ID: 21922114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dasatinib, imatinib and staurosporine capture compounds - Complementary tools for the profiling of kinases by Capture Compound Mass Spectrometry (CCMS).
    Fischer JJ; Dalhoff C; Schrey AK; Graebner OY; Michaelis S; Andrich K; Glinski M; Kroll F; Sefkow M; Dreger M; Koester H
    J Proteomics; 2011 Dec; 75(1):160-8. PubMed ID: 21664307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Introduction of Detergents in Thermal Proteome Profiling Requires Lowering the Applied Temperatures for Efficient Target Protein Identification.
    Ye Y; Li K; Ma Y; Zhang X; Li Y; Yu T; Wang Y; Ye M
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic response of staurosporine scaffold-based inhibitors to drug-resistant cancer kinase mutations.
    He Y
    Arch Pharm (Weinheim); 2020 Jun; 353(6):e1900320. PubMed ID: 32285482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-throughput, nonisotopic, competitive binding assay for kinases using nonselective inhibitor probes (ED-NSIP).
    Vainshtein I; Silveria S; Kaul P; Rouhani R; Eglen RM; Wang J
    J Biomol Screen; 2002 Dec; 7(6):507-14. PubMed ID: 14599348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.
    Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R
    J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and Quantitative Protein Precipitation for Proteome Analysis by Mass Spectrometry.
    Nickerson JL; Doucette AA
    J Proteome Res; 2020 May; 19(5):2035-2042. PubMed ID: 32195589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based rational design of staurosporine-based fluorescent probe with broad-ranging kinase affinity for kinase panel application.
    Hirozane Y; Toyofuku M; Yogo T; Tanaka Y; Sameshima T; Miyahisa I; Yoshikawa M
    Bioorg Med Chem Lett; 2019 Nov; 29(21):126641. PubMed ID: 31526603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteome-wide identification of staurosporine-binding kinases using capture compound mass spectrometry.
    Fischer JJ; Graebner Neé Baessler OY; Dreger M
    Methods Mol Biol; 2012; 795():135-47. PubMed ID: 21960220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MALDI-TOF mass-spectrometry-based versatile method for the characterization of protein kinases.
    Kondo N; Nishimura S
    Chemistry; 2009; 15(6):1413-21. PubMed ID: 19115309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical proteomics and functional proteomics strategies for protein kinase inhibitor validation and protein kinase substrate identification: applications to protein kinase CK2.
    Gyenis L; Turowec JP; Bretner M; Litchfield DW
    Biochim Biophys Acta; 2013 Jul; 1834(7):1352-8. PubMed ID: 23416530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.