BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32933254)

  • 41. Biotransformation and male rat-specific renal toxicity of diethyl ethyl- and dimethyl methylphosphonate.
    Blumbach K; Pähler A; Deger HM; Dekant W
    Toxicol Sci; 2000 Jan; 53(1):24-32. PubMed ID: 10653517
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analytical application of poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane} as a QCM coating for DMMP detection.
    He W; Liu Z; Du X; Jiang Y; Xiao D
    Talanta; 2008 Jul; 76(3):698-702. PubMed ID: 18585342
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Degradation kinetics of glucuronic acid in subcritical water.
    Wang R; Neoh TL; Kobayashi T; Miyake Y; Hosoda A; Taniguchi H; Adachi S
    Biosci Biotechnol Biochem; 2010; 74(3):601-5. PubMed ID: 20208339
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dimethyl methylphosphonate (DMMP): a 31P nuclear magnetic resonance spectroscopic probe of intracellular volume in mammalian cell cultures.
    Barry JA; McGovern KA; Lien YH; Ashmore B; Gillies RJ
    Biochemistry; 1993 May; 32(17):4665-70. PubMed ID: 8485143
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection of dimethyl methylphosphonate by thin water film confined surface-enhanced Raman scattering method.
    Wang J; Duan G; Liu G; Li Y; Chen Z; Xu L; Cai W
    J Hazard Mater; 2016 Feb; 303():94-100. PubMed ID: 26513568
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Broad-Spectrum Liquid- and Gas-Phase Decontamination of Chemical Warfare Agents by One-Dimensional Heteropolyniobates.
    Guo W; Lv H; Sullivan KP; Gordon WO; Balboa A; Wagner GW; Musaev DG; Bacsa J; Hill CL
    Angew Chem Int Ed Engl; 2016 Jun; 55(26):7403-7. PubMed ID: 27061963
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrolysis of bamboo biomass by subcritical water treatment.
    Mohan M; Banerjee T; Goud VV
    Bioresour Technol; 2015 Sep; 191():244-52. PubMed ID: 26000834
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energetics and dynamics of the reactions of O(3P) with dimethyl methylphosphonate and sarin.
    Conforti PF; Braunstein M; Dodd JA
    J Phys Chem A; 2009 Dec; 113(49):13752-61. PubMed ID: 19877689
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetics of peptide hydrolysis and amino acid decomposition at high temperature.
    Qian Y; Engel MH; Macko SA; Carpenter S; Deming JW
    Geochim Cosmochim Acta; 1993 Jul; 57(14):3281-93. PubMed ID: 11538300
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Destruction of methylphosphonic acid in a supercritical water oxidation bench-scale double wall reactor.
    Veriansyah B; Song ES; Kim JD
    J Environ Sci (China); 2011; 23(4):545-52. PubMed ID: 21793394
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Temperature dependent time resolved mid-IR photoacoustic spectroscopy of a nerve gas simulant DMMP.
    Rao KS; Razdan AK; Tyagi A; Chaudhary AK
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():696-701. PubMed ID: 29982161
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mesoporous silica nanoparticles (MSNs) for detoxification of hazardous organophorous chemicals.
    Xu P; Guo S; Yu H; Li X
    Small; 2014 Jun; 10(12):2404-12. PubMed ID: 24596297
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapid quantification of dimethyl methylphosphonate from activated carbon particles by static headspace gas chromatography mass spectrometry.
    Mitchell BL; Billingsley BG; Logue BA
    J Chromatogr A; 2013 Jun; 1293():120-5. PubMed ID: 23639122
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrolysis kinetics of tulip tree xylan in hot compressed water.
    Yoon J; Lee HW; Sim S; Myint AA; Park HJ; Lee YW
    Bioresour Technol; 2016 Aug; 214():679-685. PubMed ID: 27208738
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Removal of high concentration dimethyl methylphosphonate in the gas phase by repeated-batch reactions using TiO2.
    Mera N; Hirakawa T; Sano T; Takeuchi K; Seto Y; Negishi N
    J Hazard Mater; 2010 May; 177(1-3):274-80. PubMed ID: 20045249
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stable-carbon isotope ratios for sourcing the nerve-agent precursor methylphosphonic dichloride and its products.
    Moran JJ; Fraga CG; Nims MK
    Talanta; 2018 Aug; 186():678-683. PubMed ID: 29784420
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Uptake of a chemical warfare agent simulant (DMMP) on TiO2: reactive adsorption and active site poisoning.
    Panayotov DA; Morris JR
    Langmuir; 2009 Apr; 25(6):3652-8. PubMed ID: 19708249
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetic study of empty fruit bunch using hot liquid water and dilute acid.
    Kim JS; Choi WI; Kang M; Park JY; Lee JS
    Appl Biochem Biotechnol; 2012 Jul; 167(6):1527-39. PubMed ID: 22238014
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Supercritical water oxidation of wastewater from acrylonitrile manufacturing plant.
    Shin YH; Shin NC; Veriansyah B; Kim J; Lee YW
    J Hazard Mater; 2009 Apr; 163(2-3):1142-7. PubMed ID: 18760531
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.