BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32933272)

  • 1. Interaction of 4-nitrothiophenol with low energy electrons: Implications for plasmon mediated reactions.
    Schürmann R; Luxford TFM; Vinklárek IS; Kočišek J; Zawadzki M; Bald I
    J Chem Phys; 2020 Sep; 153(10):104303. PubMed ID: 32933272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing the photocatalysis induced by hot electrons of plasmonic nanoparticles due to tradeoff of photothermal heating.
    Mahmoud MA
    Phys Chem Chem Phys; 2017 Dec; 19(47):32016-32023. PubMed ID: 29177303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfite-triggered surface plasmon-catalyzed reduction of p-nitrothiophenol to p,p'-dimercaptoazobenzene.
    Xu G; Sun Y; Zhang Y; Xia L
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120282. PubMed ID: 34454131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Prevalence of Anions at Plasmonic Nanojunctions: A Closer Look at
    Wang CF; O'Callahan BT; Kurouski D; Krayev A; El-Khoury PZ
    J Phys Chem Lett; 2020 May; 11(10):3809-3814. PubMed ID: 32340455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying Hot Electron Energy Contributions in Plasmonic Photocatalysis Using Electrochemical Surface-Enhanced Raman Spectroscopy.
    Yu L; Du A; Yang L; Hu Y; Xie W
    J Phys Chem Lett; 2022 Jun; 13(24):5495-5500. PubMed ID: 35695751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors.
    Thorman RM; Kumar T P R; Fairbrother DH; Ingólfsson O
    Beilstein J Nanotechnol; 2015; 6():1904-26. PubMed ID: 26665061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding the kinetic limitations of plasmon catalysis: the case of 4-nitrothiophenol dimerization.
    Koopman W; Sarhan RM; Stete F; Schmitt CNZ; Bargheer M
    Nanoscale; 2020 Dec; 12(48):24411-24418. PubMed ID: 33300518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron attachment to microhydrated 4-nitro- and 4-bromo-thiophenol.
    Sala L; Sedmidubská B; Vinklárek I; Fárník M; Schürmann R; Bald I; Med J; Slavíček P; Kočišek J
    Phys Chem Chem Phys; 2021 Sep; 23(33):18173-18181. PubMed ID: 34612280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible light-dependent molecular switches on Ag/AgCl nanostructures.
    Song W; Querebillo CJ; Götz R; Katz S; Kuhlmann U; Gernert U; Weidinger IM; Hildebrandt P
    Nanoscale; 2017 Jun; 9(24):8380-8387. PubMed ID: 28594421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inelastic electron interaction (attachment/ionization) with deoxyribose.
    Ptasińska S; Denifl S; Scheier P; Märk TD
    J Chem Phys; 2004 May; 120(18):8505-11. PubMed ID: 15267776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of plasmonic heating for the plasmon-driven photodimerization of 4-nitrothiophenol.
    Sarhan RM; Koopman W; Schuetz R; Schmid T; Liebig F; Koetz J; Bargheer M
    Sci Rep; 2019 Feb; 9(1):3060. PubMed ID: 30816134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron attachment to isolated and microhydrated favipiravir.
    Sedmidubská B; Luxford TFM; Kočišek J
    Phys Chem Chem Phys; 2021 Oct; 23(38):21501-21511. PubMed ID: 34382983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactions in gas phase and condensed phase C6F5X (X = NCO, CH2CN) triggered by low energy electrons.
    Dabkowska I; Flosadóttir HD; Orzol M; Ptasinska S; Bald I; Ingólfsson O; Illenberger E
    Phys Chem Chem Phys; 2009 Jul; 11(26):5323-30. PubMed ID: 19551199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Valence Band States and Plasmonic Enhancement in Electron-Transfer-Induced Transformation of Nitrothiophenol.
    Schürmann R; Ebel K; Nicolas C; Milosavljević AR; Bald I
    J Phys Chem Lett; 2019 Jun; 10(11):3153-3158. PubMed ID: 31117676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-energy electron interactions with tungsten hexacarbonyl--W(CO)6.
    Wnorowski K; Stano M; Matias C; Denifl S; Barszczewska W; Matejčík Š
    Rapid Commun Mass Spectrom; 2012 Sep; 26(17):2093-8. PubMed ID: 22847710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociative electron attachment to pentaerythritol tetranitrate: significant fragmentation near 0 eV.
    Edtbauer A; Sulzer P; Mauracher A; Mitterdorfer C; Ferreira da Silva F; Denifl S; Märk TD; Probst M; Nunes Y; Limão-Vieira P; Scheier P
    J Chem Phys; 2010 Apr; 132(13):134305. PubMed ID: 20387931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classical vs. quantum plasmon-induced molecular transformations at metallic nanojunctions.
    Mantilla ABC; Wang CF; Krayev A; Gu Y; Schultz ZD; El-Khoury PZ
    Proc Natl Acad Sci U S A; 2024 Apr; 121(14):e2319233121. PubMed ID: 38547064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy.
    Zhang Y; Hu Y; Li G; Zhang R
    Mikrochim Acta; 2019 Jun; 186(7):477. PubMed ID: 31250191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the Catalytic Activity of Reduced Graphene Oxide Decorated with Au Nanoparticles Triggered by Visible Light.
    Wang J; Trindade FJ; de Aquino CB; Pieretti JC; Domingues SH; Ando RA; Camargo PH
    Chemistry; 2015 Jun; 21(27):9889-94. PubMed ID: 26014031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of water-electron complexes on crystalline ice surfaces.
    Bertin M; Meyer M; Stähler J; Gahl C; Wolf M; Bovensiepen U
    Faraday Discuss; 2009; 141():293-307; discussion 309-46. PubMed ID: 19227363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.