BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32933475)

  • 1. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): evidence from transcriptomics and biochemical data.
    Zhang B; Xie X; Liu X; He L; Sun Y; Wang G
    BMC Plant Biol; 2020 Sep; 20(1):424. PubMed ID: 32933475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unique life cycle transition in the red seaweed
    Mikami K; Li C; Irie R; Hama Y
    Commun Biol; 2019; 2():299. PubMed ID: 31396579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses.
    Sun P; Mao Y; Li G; Cao M; Kong F; Wang L; Bi G
    BMC Genomics; 2015 Jun; 16(1):463. PubMed ID: 26081586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression profiles of Pyropia yezoensis in response to dehydration and rehydration stresses.
    Sun P; Tang X; Bi G; Xu K; Kong F; Mao Y
    Mar Genomics; 2019 Feb; 43():43-49. PubMed ID: 30279127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Characterization and Evolutionary Analysis of Glycine-Betaine Biosynthesis Pathway in Red Seaweed
    Mao Y; Chen N; Cao M; Chen R; Guan X; Wang D
    Mar Drugs; 2019 Jan; 17(1):. PubMed ID: 30669580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of Plastid Expression Vector and Development of Genetic Transformation System for the Seaweed Pyropia yezoensis.
    Kong F; Zhao H; Liu W; Li N; Mao Y
    Mar Biotechnol (NY); 2017 Apr; 19(2):147-156. PubMed ID: 28233074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-suppression in Pyropia yezoensis (Rhodophyta) Reveals the Role of PyLHCI in Light Harvesting and Generation Switch.
    Zheng Z; He B; Xie X; Wang G
    J Phycol; 2021 Feb; 57(1):160-171. PubMed ID: 32965671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyropia yezoensis genome reveals diverse mechanisms of carbon acquisition in the intertidal environment.
    Wang D; Yu X; Xu K; Bi G; Cao M; Zelzion E; Fu C; Sun P; Liu Y; Kong F; Du G; Tang X; Yang R; Wang J; Tang L; Wang L; Zhao Y; Ge Y; Zhuang Y; Mo Z; Chen Y; Gao T; Guan X; Chen R; Qu W; Sun B; Bhattacharya D; Mao Y
    Nat Commun; 2020 Aug; 11(1):4028. PubMed ID: 32788591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the global transcriptome for Pyropia haitanensis (Bangiales, Rhodophyta) and development of cSSR markers.
    Xie C; Li B; Xu Y; Ji D; Chen C
    BMC Genomics; 2013 Feb; 14():107. PubMed ID: 23414227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic and biochemical responses to different concentrations of CO
    Wu S; Gu W; Jia S; Wang L; Wang L; Liu X; Zhou L; Huang A; Wang G
    Biotechnol Biofuels; 2021 Dec; 14(1):235. PubMed ID: 34906223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a high-growth-rate mutant strain of Pyropia yezoensis using physiology measurement and transcriptome analysis.
    Ma Y; He L; Huan L; Lu X; Wang G
    J Phycol; 2019 Jun; 55(3):651-662. PubMed ID: 30721534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbonic anhydrase isoforms of Neopyropia yezoensis: Intracellular localization and expression profiles in response to inorganic carbon concentration and life stage.
    Zhang B; Liu X; Huan L; Shao Z; Zheng Z; Wang G
    J Phycol; 2022 Oct; 58(5):657-668. PubMed ID: 35757840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential expression of a bromoperoxidase in sporophytes of a red alga, Pyropia yezoensis.
    Matsuda R; Ozgur R; Higashi Y; Takechi K; Takano H; Takio S
    Mar Biotechnol (NY); 2015 Apr; 17(2):199-210. PubMed ID: 25407492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of Functional Verification to Abiotic Stress through Antioxidant Gene Transformation of
    Lee HJ; Yang HY; Choi JI
    J Microbiol Biotechnol; 2018 Jul; 28(7):1217-1224. PubMed ID: 29913549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome-wide identification of optimal reference genes for expression analysis of Pyropia yezoensis responses to abiotic stress.
    Gao D; Kong F; Sun P; Bi G; Mao Y
    BMC Genomics; 2018 Apr; 19(1):251. PubMed ID: 29653512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discolored Red Seaweed Pyropia yezoensis with Low Commercial Value Is a Novel Resource for Production of Agar Polysaccharides.
    Sasuga K; Yamanashi T; Nakayama S; Ono S; Mikami K
    Mar Biotechnol (NY); 2018 Aug; 20(4):520-530. PubMed ID: 29696549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and functional characterization of an ammonium transporter gene, PyAMT1, related to nitrogen assimilation in the marine macroalga Pyropia yezoensis (Rhodophyta).
    Kakinuma M; Nakamoto C; Kishi K; Coury DA; Amano H
    Mar Environ Res; 2017 Jul; 128():76-87. PubMed ID: 27581686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and expression profiles of small heat shock proteins in the marine red alga Pyropia yezoensis.
    Uji T; Gondaira Y; Fukuda S; Mizuta H; Saga N
    Cell Stress Chaperones; 2019 Jan; 24(1):223-233. PubMed ID: 30632066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis of HSP70 gene superfamily in Pyropia yezoensis (Bangiales, Rhodophyta): identification, characterization and expression profiles in response to dehydration stress.
    Yu X; Mo Z; Tang X; Gao T; Mao Y
    BMC Plant Biol; 2021 Sep; 21(1):435. PubMed ID: 34560838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low temperature causes discoloration by repressing growth and nitrogen transporter gene expression in the edible red alga Pyropia yezoensis.
    Takahashi M; Kumari P; Li C; Mikami K
    Mar Environ Res; 2020 Jul; 159():105004. PubMed ID: 32662437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.