These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
848 related articles for article (PubMed ID: 32933709)
1. Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects. Hu B; Meng ZD; Zhang YQ; Ye LY; Wang CJ; Guo WC Tissue Cell; 2020 Oct; 66():101386. PubMed ID: 32933709 [TBL] [Abstract][Full Text] [Related]
2. Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) scaffolds for bone defect repair. Ge M; Ge K; Gao F; Yan W; Liu H; Xue L; Jin Y; Ma H; Zhang J Int J Nanomedicine; 2018; 13():1707-1721. PubMed ID: 29599615 [TBL] [Abstract][Full Text] [Related]
3. 3D printing of strontium-doped hydroxyapatite based composite scaffolds for repairing critical-sized rabbit calvarial defects. Luo Y; Chen S; Shi Y; Ma J Biomed Mater; 2018 Aug; 13(6):065004. PubMed ID: 30091422 [TBL] [Abstract][Full Text] [Related]
4. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692 [TBL] [Abstract][Full Text] [Related]
5. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling. Zeng H; Pathak JL; Shi Y; Ran J; Liang L; Yan Q; Wu T; Fan Q; Li M; Bai Y Biofabrication; 2020 Mar; 12(2):025032. PubMed ID: 32084655 [TBL] [Abstract][Full Text] [Related]
6. Osteogenesis effects of strontium-substituted hydroxyapatite coatings on true bone ceramic surfaces in vitro and in vivo. Li J; Yang L; Guo X; Cui W; Yang S; Wang J; Qu Y; Shao Z; Xu S Biomed Mater; 2017 Dec; 13(1):015018. PubMed ID: 28862155 [TBL] [Abstract][Full Text] [Related]
7. Strontium-substituted calcium sulfate hemihydrate/hydroxyapatite scaffold enhances bone regeneration by recruiting bone mesenchymal stromal cells. Chang H; Xiang H; Yao Z; Yang S; Tu M; Zhang X; Yu B J Biomater Appl; 2020 Jul; 35(1):97-107. PubMed ID: 32233720 [TBL] [Abstract][Full Text] [Related]
8. [Preparation and Lan Y; Zhang J; Ran Y; Li B; Cai X; Jiang T; Xue D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2024 Jun; 38(6):755-762. PubMed ID: 38918199 [TBL] [Abstract][Full Text] [Related]
9. In vivo evaluation of porous lithium-doped hydroxyapatite scaffolds for the treatment of bone defect. Luo Y; Li D; Zhao J; Yang Z; Kang P Biomed Mater Eng; 2018; 29(6):699-721. PubMed ID: 30282329 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration. Nadi A; Khodaei M; Javdani M; Mirzaei SA; Soleimannejad M; Tayebi L; Asadpour S Int J Biol Macromol; 2022 Oct; 219():1319-1336. PubMed ID: 36055598 [TBL] [Abstract][Full Text] [Related]
11. [EXPERIMENTAL STUDY ON BONE DEFECT REPAIR WITH COMPOSITE OF ATTAPULGITE/COLLAGEN TYPE I/POLY (CAPROLACTONE) IN RABBITS]. Zhang X; Song X; Wang W; Li Z; Zhao H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 May; 30(5):626-633. PubMed ID: 29786308 [TBL] [Abstract][Full Text] [Related]
12. Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering. Zhang XY; Chen YP; Han J; Mo J; Dong PF; Zhuo YH; Feng Y Int J Biol Macromol; 2019 Sep; 136():1247-1257. PubMed ID: 31247228 [TBL] [Abstract][Full Text] [Related]
13. Effect of strontium-containing on the properties of Mg-doped wollastonite bioceramic scaffolds. Wang S; Liu L; Zhou X; Yang D; Shi Z; Hao Y Biomed Eng Online; 2019 Dec; 18(1):119. PubMed ID: 31829229 [TBL] [Abstract][Full Text] [Related]
14. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds. Khan PK; Mahato A; Kundu B; Nandi SK; Mukherjee P; Datta S; Sarkar S; Mukherjee J; Nath S; Balla VK; Mandal C Sci Rep; 2016 Sep; 6():32964. PubMed ID: 27604654 [TBL] [Abstract][Full Text] [Related]
15. A bioceramic scaffold composed of strontium-doped three-dimensional hydroxyapatite whiskers for enhanced bone regeneration in osteoporotic defects. Zhao R; Chen S; Zhao W; Yang L; Yuan B; Ioan VS; Iulian AV; Yang X; Zhu X; Zhang X Theranostics; 2020; 10(4):1572-1589. PubMed ID: 32042323 [TBL] [Abstract][Full Text] [Related]
16. [Improvement of osseointegration of titanium dental implant surfaces modified with strontium-substituted hydroxyapatite]. Yan J; Zhang YM; Han Y; Zhao YT; Sun JF; Yan H Zhonghua Kou Qiang Yi Xue Za Zhi; 2010 Feb; 45(2):89-93. PubMed ID: 20368002 [TBL] [Abstract][Full Text] [Related]
17. Sintering of magnesium-strontium doped hydroxyapatite nanocrystals: Towards the production of 3D biomimetic bone scaffolds. Scalera F; Palazzo B; Barca A; Gervaso F J Biomed Mater Res A; 2020 Mar; 108(3):633-644. PubMed ID: 31749231 [TBL] [Abstract][Full Text] [Related]
18. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734 [TBL] [Abstract][Full Text] [Related]
19. Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold. Koç Demir A; Elçin AE; Elçin YM Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():8-14. PubMed ID: 29752122 [TBL] [Abstract][Full Text] [Related]
20. Form and functional repair of long bone using 3D-printed bioactive scaffolds. Tovar N; Witek L; Atria P; Sobieraj M; Bowers M; Lopez CD; Cronstein BN; Coelho PG J Tissue Eng Regen Med; 2018 Sep; 12(9):1986-1999. PubMed ID: 30044544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]