BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 32934011)

  • 1. New insights into non-transcriptional regulation of mammalian core clock proteins.
    Crosby P; Partch CL
    J Cell Sci; 2020 Sep; 133(18):. PubMed ID: 32934011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock.
    Ye R; Selby CP; Chiou YY; Ozkan-Dagliyan I; Gaddameedhi S; Sancar A
    Genes Dev; 2014 Sep; 28(18):1989-98. PubMed ID: 25228643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Molecular mechanisms of circadian clock functioning].
    Karbovskyĭ LL; Minchenko DO; Garmash IaA; Minchenko OG
    Ukr Biokhim Zh (1999); 2011; 83(3):5-24. PubMed ID: 21888051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Arg-293 of Cryptochrome1 is responsible for the allosteric regulation of CLOCK-CRY1 binding in circadian rhythm.
    Gul S; Aydin C; Ozcan O; Gurkan B; Surme S; Baris I; Kavakli IH
    J Biol Chem; 2020 Dec; 295(50):17187-17199. PubMed ID: 33028638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing.
    Fribourgh JL; Srivastava A; Sandate CR; Michael AK; Hsu PL; Rakers C; Nguyen LT; Torgrimson MR; Parico GCG; Tripathi S; Zheng N; Lander GC; Hirota T; Tama F; Partch CL
    Elife; 2020 Feb; 9():. PubMed ID: 32101164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of interactions among circadian clock proteins via surface plasmon resonance.
    Kepsutlu B; Kizilel R; Kizilel S
    J Mol Recognit; 2014 Jul; 27(7):458-69. PubMed ID: 24895278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evolutionary hotspot defines functional differences between CRYPTOCHROMES.
    Rosensweig C; Reynolds KA; Gao P; Laothamatas I; Shan Y; Ranganathan R; Takahashi JS; Green CB
    Nat Commun; 2018 Mar; 9(1):1138. PubMed ID: 29556064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The human CRY1 tail controls circadian timing by regulating its association with CLOCK:BMAL1.
    Parico GCG; Perez I; Fribourgh JL; Hernandez BN; Lee HW; Partch CL
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27971-27979. PubMed ID: 33106415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism.
    Chen R; Schirmer A; Lee Y; Lee H; Kumar V; Yoo SH; Takahashi JS; Lee C
    Mol Cell; 2009 Nov; 36(3):417-30. PubMed ID: 19917250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rat photoreceptor circadian oscillator strongly relies on lighting conditions.
    Sandu C; Hicks D; Felder-Schmittbuhl MP
    Eur J Neurosci; 2011 Aug; 34(3):507-16. PubMed ID: 21771113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TFEB regulates PER3 expression via glucose-dependent effects on CLOCK/BMAL1.
    Luo W; Ma S; Yang Y; Wang C; Zhang D; Zhang Q; Liu Y; Liu Z
    Int J Biochem Cell Biol; 2016 Sep; 78():31-42. PubMed ID: 27373683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhythmic transcription of Bmal1 stabilizes the circadian timekeeping system in mammals.
    Abe YO; Yoshitane H; Kim DW; Kawakami S; Koebis M; Nakao K; Aiba A; Kim JK; Fukada Y
    Nat Commun; 2022 Aug; 13(1):4652. PubMed ID: 35999195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRY1-CBS binding regulates circadian clock function and metabolism.
    Cal-Kayitmazbatir S; Kulkoyluoglu-Cotul E; Growe J; Selby CP; Rhoades SD; Malik D; Oner H; Asimgil H; Francey LJ; Sancar A; Kruger WD; Hogenesch JB; Weljie A; Anafi RC; Kavakli IH
    FEBS J; 2021 Jan; 288(2):614-639. PubMed ID: 32383312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of circadian core clock genes in fibroblasts of human gingiva and periodontal ligament is modulated by L-Mimosine and hypoxia in monolayer and spheroid cultures.
    Janjić K; Kurzmann C; Moritz A; Agis H
    Arch Oral Biol; 2017 Jul; 79():95-99. PubMed ID: 28350992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanism of the repressive phase of the mammalian circadian clock.
    Cao X; Yang Y; Selby CP; Liu Z; Sancar A
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33443219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous expression of the core circadian clock proteins among neuronal cell types in mouse retina.
    Liu X; Zhang Z; Ribelayga CP
    PLoS One; 2012; 7(11):e50602. PubMed ID: 23189207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMPK at the crossroads of circadian clocks and metabolism.
    Jordan SD; Lamia KA
    Mol Cell Endocrinol; 2013 Feb; 366(2):163-9. PubMed ID: 22750052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal dynamics of mouse hippocampal clock gene expression support memory processing.
    Jilg A; Lesny S; Peruzki N; Schwegler H; Selbach O; Dehghani F; Stehle JH
    Hippocampus; 2010 Mar; 20(3):377-88. PubMed ID: 19437502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein interaction networks of the mammalian core clock proteins.
    Kavakli IH; Ozturk N; Baris I
    Adv Protein Chem Struct Biol; 2022; 131():207-233. PubMed ID: 35871891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1.
    Michael AK; Fribourgh JL; Chelliah Y; Sandate CR; Hura GL; Schneidman-Duhovny D; Tripathi SM; Takahashi JS; Partch CL
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):1560-1565. PubMed ID: 28143926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.