These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 3293489)

  • 1. Function of phagocytes obtained from lacteal secretions of lactating and nonlactating cows.
    Fox LK; McDonald JS; Hillers JK; Corbeil LB
    Am J Vet Res; 1988 May; 49(5):678-81. PubMed ID: 3293489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of antibiotics on phagocyte recruitment, function, and morphology in the bovine mammary gland during the early nonlactating period.
    Lintner TJ; Eberhart RJ
    Am J Vet Res; 1990 Apr; 51(4):533-42. PubMed ID: 2327610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bactericidal activity of macrophages against Streptococcus uberis is different in mammary gland secretions of lactating and drying off cows.
    Denis M; Parlane NA; Lacy-Hulbert SJ; Summers EL; Buddle BM; Wedlock DN
    Vet Immunol Immunopathol; 2006 Nov; 114(1-2):111-20. PubMed ID: 16949677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total and differential somatic cell counts in secretions from noninfected bovine mammary glands: the early nonlactating period.
    McDonald JS; Anderson AJ
    Am J Vet Res; 1981 Aug; 42(8):1360-5. PubMed ID: 7294470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of involution on intramammary phagocytic defense mechanisms.
    Paape MJ; Miller RH; Young MD; Peters RR
    J Dairy Sci; 1992 Jul; 75(7):1849-56. PubMed ID: 1500581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of intracisternal bead devices on lacteal secretion components, plaque formation, and bacterial infection during the nonlactating period.
    Nickerson SC; Thompson WJ; Oliver SP; Akers RM
    Am J Vet Res; 1988 Aug; 49(8):1205-9. PubMed ID: 3178017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of nonlactating and peripartum bovine mammary secretions on growth of Staphylococcus species.
    Oliver SP; Juneja VK; Harmon RJ
    J Dairy Sci; 1990 Apr; 73(4):995-9. PubMed ID: 2345209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total and differential somatic cell counts in secretions from noninfected bovine mammary glands: the peripartum period.
    McDonald JS; Anderson AJ
    Am J Vet Res; 1981 Aug; 42(8):1366-8. PubMed ID: 7294471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of Corynebacterium bovis in mammary secretions during physiological transitions of the bovine mammary gland.
    Oliver SP; Juneja VK
    J Dairy Sci; 1990 Feb; 73(2):351-6. PubMed ID: 2329201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of immune cells in bovine mammary gland secretions by zymosan-treated bovine serum.
    Kimura K; Goff JP; Schmerr MJ; Stabel JR; Inumaru S; Yokomizo Y
    J Dairy Sci; 2008 May; 91(5):1852-64. PubMed ID: 18420616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of lacteal leukocyte phagocytosis by colostrum, nonlactating secretion, and mastitic milk.
    Targowski SP; Niemialtowski M
    Am J Vet Res; 1986 Sep; 47(9):1940-5. PubMed ID: 2945501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phagocytic and bactericidal properties of bovine macrophages from non-lactating mammary glands.
    Mullan NA; Carter EA; Nguyen KA
    Res Vet Sci; 1985 Mar; 38(2):160-6. PubMed ID: 4001555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth inhibition of Escherichia coli and Klebsiella pneumoniae during involution of the bovine mammary gland: relation to secretion composition.
    Oliver SP; Bushe T
    Am J Vet Res; 1987 Dec; 48(12):1669-73. PubMed ID: 3324839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between penetrability of the papillary duct (teat) and phagocytic capability in lactating dairy cows.
    Lefcourt AM; Paape MJ; Dulin A; Schultze WD
    Am J Vet Res; 1983 Feb; 44(2):304-5. PubMed ID: 6338773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phagocytosis, bactericidal activity, and oxidative metabolism of milk neutrophils from dairy cows fed selenium-supplemented and selenium-deficient diets.
    Grasso PJ; Scholz RW; Erskine RJ; Eberhart RJ
    Am J Vet Res; 1990 Feb; 51(2):269-74. PubMed ID: 2405755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total and differential cell counts in secretions of the nonlactating bovine mammary gland.
    Jensen DL; Eberhart RJ
    Am J Vet Res; 1981 May; 42(5):743-7. PubMed ID: 7258795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Susceptibility of Escherichia coli isolated from intramammary infections to phagocytosis by bovine neutrophils.
    Hogan JS; Todhunter DA; Smith KL; Schoenberger PS; Wilson RA
    J Dairy Sci; 1992 Dec; 75(12):3324-9. PubMed ID: 1474201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of milking frequency on milk somatic cell count characteristics and mammary secretory cell damage in cows.
    Stelwagen K; Lacy-Hulbert SJ
    Am J Vet Res; 1996 Jun; 57(6):902-5. PubMed ID: 8725821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibody-producing cells in bovine lacteal secretions after local immunization.
    Chang CC; Winter AJ; Norcross NL
    Am J Vet Res; 1980 Sep; 41(9):1416-8. PubMed ID: 7004281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modifications of the defense and remodeling functionalities of bovine neutrophils inside the mammary gland of milk stasis cows received a commercial dry-cow treatment.
    Yu TC; Chang CJ; Ho CH; Peh HC; Chen SE; Liu WB; Peng HY; Piamya P; Chen MT; Nagahata H
    Vet Immunol Immunopathol; 2011 Dec; 144(3-4):210-9. PubMed ID: 22001628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.