These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 32935286)
21. Mast cells are required for normal healing of skin wounds in mice. Weller K; Foitzik K; Paus R; Syska W; Maurer M FASEB J; 2006 Nov; 20(13):2366-8. PubMed ID: 16966487 [TBL] [Abstract][Full Text] [Related]
22. Effects of pulsed infra-red low level-laser irradiation on mast cells number and degranulation in open skin wound healing of healthy and streptozotocin-induced diabetic rats. Fathabadie FF; Bayat M; Amini A; Bayat M; Rezaie F J Cosmet Laser Ther; 2013 Dec; 15(6):294-304. PubMed ID: 23463989 [TBL] [Abstract][Full Text] [Related]
23. Toward Developing Immunocompetent Diabetic Foot Ulcer-on-a-Chip Models for Drug Testing. Ejiugwo M; Rochev Y; Gethin G; O'Connor G Tissue Eng Part C Methods; 2021 Feb; 27(2):77-88. PubMed ID: 33406980 [TBL] [Abstract][Full Text] [Related]
24. MF-094, a potent and selective USP30 inhibitor, accelerates diabetic wound healing by inhibiting the NLRP3 inflammasome. Li X; Wang T; Tao Y; Wang X; Li L; Liu J Exp Cell Res; 2022 Jan; 410(2):112967. PubMed ID: 34883112 [TBL] [Abstract][Full Text] [Related]
25. Two-Pronged Microbe Delivery of Nitric Oxide and Oxygen for Diabetic Wound Healing. Chen HH; Fu FS; Chen QW; Zhang Y; Zhang XZ Nano Lett; 2023 Jun; 23(12):5595-5602. PubMed ID: 37327393 [TBL] [Abstract][Full Text] [Related]
26. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Baltzis D; Eleftheriadou I; Veves A Adv Ther; 2014 Aug; 31(8):817-36. PubMed ID: 25069580 [TBL] [Abstract][Full Text] [Related]
27. Increased number of Langerhans cells in the epidermis of diabetic foot ulcers correlates with healing outcome. Stojadinovic O; Yin N; Lehmann J; Pastar I; Kirsner RS; Tomic-Canic M Immunol Res; 2013 Dec; 57(1-3):222-8. PubMed ID: 24277309 [TBL] [Abstract][Full Text] [Related]
28. Translational development of ABCB5 Kerstan A; Dieter K; Niebergall-Roth E; Klingele S; Jünger M; Hasslacher C; Daeschlein G; Stemler L; Meyer-Pannwitt U; Schubert K; Klausmann G; Raab T; Goebeler M; Kraft K; Esterlechner J; Schröder HM; Sadeghi S; Ballikaya S; Gasser M; Waaga-Gasser AM; Murphy GF; Orgill DP; Frank NY; Ganss C; Scharffetter-Kochanek K; Frank MH; Kluth MA Stem Cell Res Ther; 2022 Sep; 13(1):455. PubMed ID: 36064604 [TBL] [Abstract][Full Text] [Related]
29. Mechanisms of diabetic foot ulceration: A review. Deng H; Li B; Shen Q; Zhang C; Kuang L; Chen R; Wang S; Ma Z; Li G J Diabetes; 2023 Apr; 15(4):299-312. PubMed ID: 36891783 [TBL] [Abstract][Full Text] [Related]
30. [Effects of San-huang-sheng-fu oil on peripheral circulatory disorders and foot ulcers in diabetic rats and the mechanisms]. Wan Y; Yang YJ; Li YS; Li XJ; Zhang W; Liu M; Tang HB Zhonghua Shao Shang Za Zhi; 2016 Mar; 32(3):168-75. PubMed ID: 27030654 [TBL] [Abstract][Full Text] [Related]
31. Single-cell profiling reveals transcriptomic signatures of vascular endothelial cells in non-healing diabetic foot ulcers. Lu Y; Liu X; Zhao J; Bie F; Liu Y; Xie J; Wang P; Zhu J; Xiong Y; Qin S; Yang F; Chen L; Xu Y Front Endocrinol (Lausanne); 2023; 14():1275612. PubMed ID: 38107519 [TBL] [Abstract][Full Text] [Related]
32. Localization of human adipose-derived stem cells and their effect in repair of diabetic foot ulcers in rats. Shi R; Jin Y; Cao C; Han S; Shao X; Meng L; Cheng J; Zhang M; Zheng J; Xu J; Li M Stem Cell Res Ther; 2016 Oct; 7(1):155. PubMed ID: 27770835 [TBL] [Abstract][Full Text] [Related]
33. Neuropeptides, Inflammation, Biofilms, and diabetic Foot Ulcers. Yang S; Hu L; Han R; Yang Y Exp Clin Endocrinol Diabetes; 2022 Jul; 130(7):439-446. PubMed ID: 34225369 [TBL] [Abstract][Full Text] [Related]
34. Topical Anti-ulcerogenic Effect of the Beta-adrenergic Blockers on Diabetic Foot Ulcers: Recent Advances and Future Prospectives. Singh P; Sharma S; Sharma PK; Alam A Curr Diabetes Rev; 2024; 20(8):23-37. PubMed ID: 37867269 [TBL] [Abstract][Full Text] [Related]
35. Combined effects of photobiomodulation and curcumin on mast cells and wound strength in wound healing of streptozotocin-induced diabetes in rats. Soleimani H; Amini A; Abdollahifar MA; Norouzian M; Kouhkheil R; Mostafavinia A; Ghoreishi SK; Bayat S; Chien S; Bayat M Lasers Med Sci; 2021 Mar; 36(2):375-386. PubMed ID: 32696423 [TBL] [Abstract][Full Text] [Related]
36. Hyperglycaemia and Ischaemia Impair Wound Healing via Toll-like Receptor 4 Pathway Activation in vitro and in an Experimental Murine Model. Portou MJ; Yu R; Baker D; Xu S; Abraham D; Tsui J Eur J Vasc Endovasc Surg; 2020 Jan; 59(1):117-127. PubMed ID: 31732468 [TBL] [Abstract][Full Text] [Related]
37. Stem Cells and Angiogenesis: Implications and Limitations in Enhancing Chronic Diabetic Foot Ulcer Healing. Rai V; Moellmer R; Agrawal DK Cells; 2022 Jul; 11(15):. PubMed ID: 35892584 [TBL] [Abstract][Full Text] [Related]
38. Silencing TNFα with lipidoid nanoparticles downregulates both TNFα and MCP-1 in an in vitro co-culture model of diabetic foot ulcers. Kasiewicz LN; Whitehead KA Acta Biomater; 2016 Mar; 32():120-128. PubMed ID: 26689461 [TBL] [Abstract][Full Text] [Related]
39. Impaired dermal microvascular reactivity and implications for diabetic wound formation and healing: an evidence review. O'Brien TD J Wound Care; 2020 Sep; 29(Sup9):S21-S28. PubMed ID: 32924808 [TBL] [Abstract][Full Text] [Related]