These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32935403)

  • 1. Chemoproteomics: Towards Global Drug Target Profiling.
    Lu KY
    Chembiochem; 2020 Nov; 21(22):3189-3191. PubMed ID: 32935403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoproteomic-enabled phenotypic screening.
    Conway LP; Li W; Parker CG
    Cell Chem Biol; 2021 Mar; 28(3):371-393. PubMed ID: 33577749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability-based approaches in chemoproteomics.
    George AL; Dueñas ME; Marín-Rubio JL; Trost M
    Expert Rev Mol Med; 2024 Apr; 26():e6. PubMed ID: 38604802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes.
    Piazza I; Beaton N; Bruderer R; Knobloch T; Barbisan C; Chandat L; Sudau A; Siepe I; Rinner O; de Souza N; Picotti P; Reiter L
    Nat Commun; 2020 Aug; 11(1):4200. PubMed ID: 32826910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel drug discovery and molecular biological methods, via DNA, RNA and protein changes using structure-function transitions: Transitional structural chemogenomics, transitional structural chemoproteomics and novel multi-stranded nucleic acid microarray.
    Gagna CE; Lambert WC
    Med Hypotheses; 2006; 67(5):1099-114. PubMed ID: 16828979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated structure- and system-based framework to identify new targets of metabolites and known drugs.
    Naveed H; Hameed US; Harrus D; Bourguet W; Arold ST; Gao X
    Bioinformatics; 2015 Dec; 31(24):3922-9. PubMed ID: 26286808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical chemoproteomics-Opportunities and obstacles.
    Jones LH; Neubert H
    Sci Transl Med; 2017 Apr; 9(386):. PubMed ID: 28424333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Drug-Target Interactions with Decision Templates.
    Yan XY; Zhang SW
    Curr Protein Pept Sci; 2018; 19(5):498-506. PubMed ID: 27829344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.
    Meanwell NA
    Chem Res Toxicol; 2011 Sep; 24(9):1420-56. PubMed ID: 21790149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systems biology analysis of protein-drug interactions.
    Colinge J; Rix U; Bennett KL; Superti-Furga G
    Proteomics Clin Appl; 2012 Jan; 6(1-2):102-16. PubMed ID: 22213655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding proteomics into the analysis of chiral drugs.
    Sui J; Zhang J; Ching CB; Chen WN
    Mol Biosyst; 2009 Jun; 5(6):603-8. PubMed ID: 19462017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemoproteomic approaches to drug target identification and drug profiling.
    Bantscheff M; Drewes G
    Bioorg Med Chem; 2012 Mar; 20(6):1973-8. PubMed ID: 22130419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug target deconvolution by chemical proteomics.
    Raida M
    Curr Opin Chem Biol; 2011 Aug; 15(4):570-5. PubMed ID: 21763176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of ligand based models for protein domains to predict novel molecular targets and applications to triage affinity chromatography data.
    Bender A; Mikhailov D; Glick M; Scheiber J; Davies JW; Cleaver S; Marshall S; Tallarico JA; Harrington E; Cornella-Taracido I; Jenkins JL
    J Proteome Res; 2009 May; 8(5):2575-85. PubMed ID: 19271732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PETRA: Drug Engineering via Rigidity Analysis.
    Herr S; Myers-Dean J; Read H; Jagodzinski F
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32178472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular Protein-Drug Interactions Probed by Direct Mass Spectrometry of Cell Lysates.
    Rogawski R; Rogel A; Bloch I; Gal M; Horovitz A; London N; Sharon M
    Angew Chem Int Ed Engl; 2021 Sep; 60(36):19637-19642. PubMed ID: 34101963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approaches to target profiling of natural products.
    Yue R; Shan L; Yang X; Zhang W
    Curr Med Chem; 2012; 19(22):3841-55. PubMed ID: 22257052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second-site NMR screening and linker design.
    Jahnke W; Flörsheimer A; Blommers MJ; Paris CG; Heim J; Nalin CM; Perez LB
    Curr Top Med Chem; 2003; 3(1):69-80. PubMed ID: 12570778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR screening in drug discovery.
    Moore JM
    Curr Opin Biotechnol; 1999 Feb; 10(1):54-8. PubMed ID: 10047510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.