These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 32935547)
1. Outstanding Electrode-Dependent Seebeck Coefficients in Ionic Hydrogels for Thermally Chargeable Supercapacitor near Room Temperature. Horike S; Wei Q; Kirihara K; Mukaida M; Sasaki T; Koshiba Y; Fukushima T; Ishida K ACS Appl Mater Interfaces; 2020 Sep; 12(39):43674-43683. PubMed ID: 32935547 [TBL] [Abstract][Full Text] [Related]
2. Cellulose ionic conductor with tunable Seebeck coefficient for low-grade heat harvesting. Hu Y; Chen M; Qin C; Zhang J; Lu A Carbohydr Polym; 2022 Sep; 292():119650. PubMed ID: 35725205 [TBL] [Abstract][Full Text] [Related]
3. Thermoelectric energy recovery at ionic-liquid/electrode interface. Bonetti M; Nakamae S; Huang BT; Salez TJ; Wiertel-Gasquet C; Roger M J Chem Phys; 2015 Jun; 142(24):244708. PubMed ID: 26133450 [TBL] [Abstract][Full Text] [Related]
4. Super-stretching and high-performance ionic thermoelectric hydrogels based on carboxylated bacterial cellulose coordination for self-powered sensors. Chen L; Lou J; Rong X; Liu Z; Ding Q; Li X; Jiang Y; Ji X; Han W Carbohydr Polym; 2023 Dec; 321():121310. PubMed ID: 37739507 [TBL] [Abstract][Full Text] [Related]
5. Tuning the Seebeck effect in C Liu Y; Xu L; Zhao C; Shao M; Hu B Phys Chem Chem Phys; 2017 Jun; 19(22):14793-14800. PubMed ID: 28548168 [TBL] [Abstract][Full Text] [Related]
6. Multi-Ionic Hydrogel with Outstanding Heat-to-Electrical Performance for Low-Grade Heat Harvesting. Zhou Y; Dong Z; He Y; Zhu W; Yuan Y; Zeng H; Li C; Chen S; Sun K Chem Asian J; 2022 Nov; 17(22):e202200850. PubMed ID: 36074542 [TBL] [Abstract][Full Text] [Related]
7. Mixed Ionic-Electronic Conducting Hydrogels with Carboxylated Carbon Nanotubes for High Performance Wearable Thermoelectric Harvesters. Lee CY; Lin YT; Hong SH; Wang CH; Jeng US; Tung SH; Liu CL ACS Appl Mater Interfaces; 2023 Dec; 15(48):56072-56083. PubMed ID: 37982689 [TBL] [Abstract][Full Text] [Related]
8. Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation. Chi C; Liu G; An M; Zhang Y; Song D; Qi X; Zhao C; Wang Z; Du Y; Lin Z; Lu Y; Huang H; Li Y; Lin C; Ma W; Huang B; Du X; Zhang X Nat Commun; 2023 Jan; 14(1):306. PubMed ID: 36658195 [TBL] [Abstract][Full Text] [Related]
9. Exploring Pyrazine-Based Organic Redox Couples for Enhanced Thermoelectric Performance in Wearable Energy Harvesters. Lee CY; Hsu CC; Wang CH; Jeng US; Tung SH; Hu CC; Liu CL Small; 2024 Oct; ():e2407622. PubMed ID: 39358979 [TBL] [Abstract][Full Text] [Related]
10. Advanced Bacterial Cellulose Ionic Conductors with Gigantic Thermopower for Low-Grade Heat Harvesting. Wu Z; Wang B; Li J; Wu R; Jin M; Zhao H; Chen S; Wang H Nano Lett; 2022 Oct; 22(20):8152-8160. PubMed ID: 36219168 [TBL] [Abstract][Full Text] [Related]
12. Thermoelectric Converters Based on Ionic Conductors. Wu X; Gao N; Jia H; Wang Y Chem Asian J; 2021 Jan; 16(2):129-141. PubMed ID: 33289291 [TBL] [Abstract][Full Text] [Related]
13. A pH-Sensitive Stretchable Zwitterionic Hydrogel with Bipolar Thermoelectricity. Lee LC; Huang KT; Lin YT; Jeng US; Wang CH; Tung SH; Huang CJ; Liu CL Small; 2024 Jun; 20(24):e2311811. PubMed ID: 38372500 [TBL] [Abstract][Full Text] [Related]
14. Environmentally Tolerant Ionic Hydrogel with High Power Density for Low-Grade Heat Harvesting. Chen J; Shi C; Wu L; Deng Y; Wang Y; Zhang L; Zhang Q; Peng F; Tao XM; Zhang M; Zeng W ACS Appl Mater Interfaces; 2022 Aug; 14(30):34714-34721. PubMed ID: 35876495 [TBL] [Abstract][Full Text] [Related]
15. Mechanically Adaptative and Environmentally Stable Ionogels for Energy Harvest. Zhao W; Lei Z; Wu P Adv Sci (Weinh); 2023 Jun; 10(18):e2300253. PubMed ID: 37083268 [TBL] [Abstract][Full Text] [Related]
16. Role of Ions in Hydrogels with an Ionic Seebeck Coefficient of 52.9 mV K He Y; Zhang Q; Cheng H; Liu Y; Shu Y; Geng Y; Zheng Y; Qin B; Zhou Y; Chen S; Li J; Li M; Odunmbaku GO; Li C; Shumilova T; Ouyang J; Sun K J Phys Chem Lett; 2022 May; 13(20):4621-4627. PubMed ID: 35587455 [TBL] [Abstract][Full Text] [Related]
18. Thermal-to-Electrical Conversion Based on Salinity Gradient Driven by Evaporation. Hu L; Zheng H; Yang S; Liu X; Du YM; Li J; Wang H; Sun K Small; 2024 Jul; 20(28):e2311129. PubMed ID: 38319033 [TBL] [Abstract][Full Text] [Related]
19. Giant Thermopower of Hydrogen Ion Enhanced by a Strong Hydrogen Bond System. Chen Q; Chen B; Xiao S; Feng J; Yang J; Yue Q; Zhang X; Wang T ACS Appl Mater Interfaces; 2022 May; 14(17):19304-19314. PubMed ID: 35468291 [TBL] [Abstract][Full Text] [Related]
20. High Seebeck Coefficient Achieved by Multinuclear Organometallic Molecular Junctions. Park S; Jang J; Tanaka Y; Yoon HJ Nano Lett; 2022 Dec; 22(23):9693-9699. PubMed ID: 36441166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]