BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32935926)

  • 21. Vestigial mediates the effect of insulin signaling pathway on wing-morph switching in planthoppers.
    Zhang JL; Fu SJ; Chen SJ; Chen HH; Liu YL; Liu XY; Xu HJ
    PLoS Genet; 2021 Feb; 17(2):e1009312. PubMed ID: 33561165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wingless gene cloning and its role in manipulating the wing dimorphism in the white-backed planthopper, Sogatella furcifera.
    Yu JL; An ZF; Liu XD
    BMC Mol Biol; 2014 Sep; 15():20. PubMed ID: 25266639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silencing of juvenile hormone epoxide hydrolase gene (Nljheh) enhances short wing formation in a macropterous strain of the brown planthopper, Nilaparvata lugens.
    Zhao J; Zhou Y; Li X; Cai W; Hua H
    J Insect Physiol; 2017 Oct; 102():18-26. PubMed ID: 28867330
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of MicroRNAs Associated with Reproduction in the Brown Planthopper,
    Wang N; Zhang C; Chen M; Shi Z; Zhou Y; Shi X; Zhou W; Zhu Z
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrabithorax is required for membranous wing identity in the beetle Tribolium castaneum.
    Tomoyasu Y; Wheeler SR; Denell RE
    Nature; 2005 Feb; 433(7026):643-7. PubMed ID: 15703749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Host quality induces phenotypic plasticity in a wing polyphenic insect.
    Lin X; Xu Y; Jiang J; Lavine M; Lavine LC
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):7563-7568. PubMed ID: 29967173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The transcription factor Zfh1 acts as a wing-morph switch in planthoppers.
    Zhang JL; Chen SJ; Liu XY; Moczek AP; Xu HJ
    Nat Commun; 2022 Sep; 13(1):5670. PubMed ID: 36167844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the signaling pathways of wing dimorphism regulated by biotic and abiotic stress in the brown planthopper.
    Chen JX; Li WX; Su Q; Lyu J; Zhang YB; Zhang WQ
    Insect Sci; 2023 Aug; 30(4):1046-1062. PubMed ID: 36382805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular basis for insecticide-enhanced thermotolerance in the brown planthopper Nilaparvata lugens Stål (Hemiptera:Delphacidae).
    Ge LQ; Huang LJ; Yang GQ; Song QS; Stanley D; Gurr GM; Wu JC
    Mol Ecol; 2013 Nov; 22(22):5624-34. PubMed ID: 24303791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different expression profiles suggest functional differentiation among chemosensory proteins in Nilaparvata lugens (Hemiptera: Delphacidae).
    Yang K; He P; Dong SL
    J Insect Sci; 2014; 14():. PubMed ID: 25527582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptome Analysis of the Regulatory Mechanism of FoxO on Wing Dimorphism in the Brown Planthopper,
    Xu N; Wei SF; Xu HJ
    Insects; 2021 May; 12(5):. PubMed ID: 34064478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A genome-wide identification and analysis of the homeobox genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae).
    Fu SJ; Zhang JL; Xu HJ
    Arch Insect Biochem Physiol; 2021 Sep; 108(1):e21833. PubMed ID: 34288091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide analysis of long non-coding RNAs and their association with wing development in Aphis citricidus (Hemiptera: Aphididae).
    Shang F; Ding BY; Zhang YT; Wu JJ; Pan ST; Wang JJ
    Insect Biochem Mol Biol; 2021 Dec; 139():103666. PubMed ID: 34619323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drosophila mir-9a regulates wing development via fine-tuning expression of the LIM only factor, dLMO.
    Biryukova I; Asmar J; Abdesselem H; Heitzler P
    Dev Biol; 2009 Mar; 327(2):487-96. PubMed ID: 19162004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutations in NlInR1 affect normal growth and lifespan in the brown planthopper Nilaparvata lugens.
    Zhao Y; Huang G; Zhang W
    Insect Biochem Mol Biol; 2019 Dec; 115():103246. PubMed ID: 31618682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of NlHox3, an essential gene for embryonic development in Nilaparvata lugens.
    Ren ZW; Zhuo JC; Zhang CX; Wang D
    Arch Insect Biochem Physiol; 2018 Jun; 98(2):e21448. PubMed ID: 29369417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MicroRNA-dependent regulation of Hox gene expression sculpts fine-grain morphological patterns in a
    Kaschula R; Pinho S; Alonso CR
    Development; 2018 Oct; 145(20):. PubMed ID: 30143542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNAi-mediated silencing of ferritin genes in the brown planthopper Nilaparvata lugens affects survival, growth and female fecundity.
    Shen Y; Chen YZ; Zhang CX
    Pest Manag Sci; 2021 Jan; 77(1):365-377. PubMed ID: 32741141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular cloning and characterization of a ryanodine receptor gene in brown planthopper (BPH), Nilaparvata lugens (Stål).
    Wang J; Xie Z; Gao J; Liu Y; Wang W; Huang L; Wang J
    Pest Manag Sci; 2014 May; 70(5):790-7. PubMed ID: 23893901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular characterization of insulin-like peptides in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae).
    Xue WH; Liu YL; Jiang YQ; He SF; Wang QQ; Yang ZN; Xu HJ
    Insect Mol Biol; 2020 Jun; 29(3):309-319. PubMed ID: 31967370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.