These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32935937)

  • 21. Realizing tissue integration with supramolecular hydrogels.
    Feliciano AJ; van Blitterswijk C; Moroni L; Baker MB
    Acta Biomater; 2021 Apr; 124():1-14. PubMed ID: 33508507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug delivery applications for superporous hydrogels.
    Mastropietro DJ; Omidian H; Park K
    Expert Opin Drug Deliv; 2012 Jan; 9(1):71-89. PubMed ID: 22145909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multifunctional Self-Assembled Peptide Hydrogels for Biomedical Applications.
    Sedighi M; Shrestha N; Mahmoudi Z; Khademi Z; Ghasempour A; Dehghan H; Talebi SF; Toolabi M; Préat V; Chen B; Guo X; Shahbazi MA
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PLGA nanoparticle-reinforced supramolecular peptide hydrogels for local delivery of multiple drugs with enhanced synergism.
    Wu C; Wang C; Sun L; Xu K; Zhong W
    Soft Matter; 2020 Dec; 16(46):10528-10536. PubMed ID: 33073837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peptide-based supramolecular hydrogels for local drug delivery.
    Zhang Z; Ai S; Yang Z; Li X
    Adv Drug Deliv Rev; 2021 Jul; 174():482-503. PubMed ID: 34015417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amino Acids and Peptide-Based Supramolecular Hydrogels for Three-Dimensional Cell Culture.
    Dou XQ; Feng CL
    Adv Mater; 2017 Apr; 29(16):. PubMed ID: 28112836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics.
    Wang H; Feng Z; Xu B
    Adv Drug Deliv Rev; 2017 Feb; 110-111():102-111. PubMed ID: 27102943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supramolecular Assembly of Peptide and Metallopeptide Gelators and Their Stimuli-Responsive Properties in Biomedical Applications.
    Falcone N; Kraatz HB
    Chemistry; 2018 Sep; 24(54):14316-14328. PubMed ID: 29667727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features.
    Li F; Han J; Cao T; Lam W; Fan B; Tang W; Chen S; Fok KL; Li L
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11259-11264. PubMed ID: 31110004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications.
    Fichman G; Gazit E
    Acta Biomater; 2014 Apr; 10(4):1671-82. PubMed ID: 23958781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supramolecular hydrogels: synthesis, properties and their biomedical applications.
    Dong R; Pang Y; Su Y; Zhu X
    Biomater Sci; 2015 Jul; 3(7):937-54. PubMed ID: 26221932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The development of low-molecular weight hydrogels for applications in cancer therapy.
    Tian R; Chen J; Niu R
    Nanoscale; 2014 Apr; 6(7):3474-82. PubMed ID: 24548933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tailor-Made Functional Peptide Self-Assembling Nanostructures.
    Amit M; Yuran S; Gazit E; Reches M; Ashkenasy N
    Adv Mater; 2018 Oct; 30(41):e1707083. PubMed ID: 29989255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mixed α/β-Peptides as a Class of Short Amphipathic Peptide Hydrogelators with Enhanced Proteolytic Stability.
    Mangelschots J; Bibian M; Gardiner J; Waddington L; Van Wanseele Y; Van Eeckhaut A; Acevedo MM; Van Mele B; Madder A; Hoogenboom R; Ballet S
    Biomacromolecules; 2016 Feb; 17(2):437-45. PubMed ID: 26741458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications.
    Koutsopoulos S
    J Biomed Mater Res A; 2016 Apr; 104(4):1002-16. PubMed ID: 26707893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isomeric control of the mechanical properties of supramolecular filament hydrogels.
    Lin YA; Kang M; Chen WC; Ou YC; Cheetham AG; Wu PH; Wirtz D; Loverde SM; Cui H
    Biomater Sci; 2017 Dec; 6(1):216-224. PubMed ID: 29214247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid Production of Multifunctional Self-Assembling Peptides for Incorporation and Visualization within Hydrogel Biomaterials.
    Ford EM; Kloxin AM
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4175-4195. PubMed ID: 34283566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced postoperative cancer therapy by iron-based hydrogels.
    Zhang H; Zhang M; Zhang X; Gao Y; Ma Y; Chen H; Wan J; Li C; Wang F; Sun X
    Biomater Res; 2022 May; 26(1):19. PubMed ID: 35606838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Supramolecular Peptide/Polymer Hybrid Hydrogels for Biomedical Applications.
    Radvar E; Azevedo HS
    Macromol Biosci; 2019 Jan; 19(1):e1800221. PubMed ID: 30101512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electro-responsive hydrogels: macromolecular and supramolecular approaches in the biomedical field.
    Carayon I; Gaubert A; Mousli Y; Philippe B
    Biomater Sci; 2020 Oct; 8(20):5589-5600. PubMed ID: 32996479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.