BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32936624)

  • 21. Enantioselective metabolism and toxic effects of metalaxyl on primary hepatocytes from rat.
    Wang X; Zhu W; Qiu J; Zhang P; Wang Y; Zhou Z
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18649-56. PubMed ID: 27306210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental behavior of the chiral acetamide pesticide metalaxyl: enantioselective degradation and chiral stability in soil.
    Buser HR; Müller MD; Poiger T; Balmer ME
    Environ Sci Technol; 2002 Jan; 36(2):221-6. PubMed ID: 11827055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enantioselective effects of metalaxyl on soil enzyme activity.
    Yue H; Fang S; Zhang Y; Ning Y; Yu W; Kong F; Qiu J
    Chirality; 2016 Dec; 28(12):771-777. PubMed ID: 27862348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enantioselective bioaccumulation and degradation of sediment-associated metalaxyl enantiomers in Tubifex tubifex.
    Di S; Liu T; Diao J; Zhou Z
    J Agric Food Chem; 2013 May; 61(21):4997-5002. PubMed ID: 23635317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enantioselective bioaccumulation and dissipation of soil-associated metalaxyl enantiomers in tubifex.
    Di S; Liu T; Lu Y; Zhou Z; Diao J
    Chirality; 2014 Jan; 26(1):33-8. PubMed ID: 24174372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for the effect of sorption enantioselectivity on the availability of chiral pesticide enantiomers in soil.
    Gámiz B; Facenda G; Celis R
    Environ Pollut; 2016 Jun; 213():966-973. PubMed ID: 27060281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enantioselective degradation of metalaxyl in anaerobic activated sewage sludge.
    Chen S; Liu W
    Bull Environ Contam Toxicol; 2009 Mar; 82(3):327-31. PubMed ID: 18787748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of biotic and abiotic factors on dissipating metalaxyl in soil.
    Sukul P; Spiteller M
    Chemosphere; 2001 Nov; 45(6-7):941-7. PubMed ID: 11695617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship between enantioselective transformation of racemic quizalofop-ethyl and soil bacterial diversity: A destructive approach.
    Zhou Q; Zhang X; Huang J
    Chirality; 2019 Sep; 31(9):700-710. PubMed ID: 31298441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Persistence, fate, and metabolism of [(14)C]metalaxyl in typical Indian soils.
    Sukul P; Spiteller M
    J Agric Food Chem; 2001 May; 49(5):2352-8. PubMed ID: 11368603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of an organo-layered double hydroxide and two organic residues as amendments to immobilize metalaxyl enantiomers in soils: A comparative study.
    López-Cabeza R; Cornejo J; Celis R
    J Environ Manage; 2016 Oct; 181():135-145. PubMed ID: 27341374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Behavior of metalaxyl and its pure R-enantiomer in sunflower plants (Helianthus annus).
    Zadra C; Marucchini C; Zazzerini A
    J Agric Food Chem; 2002 Sep; 50(19):5373-7. PubMed ID: 12207477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response to shock load of engineered nanoparticles in an activated sludge treatment system: Insight into microbial community succession.
    Zhang J; Dong Q; Liu Y; Zhou X; Shi H
    Chemosphere; 2016 Feb; 144():1837-44. PubMed ID: 26539708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of metalaxyl and folpet by filamentous fungi isolated from Portuguese (Alentejo) vineyard soils.
    Martins MR; Pereira P; Lima N; Cruz-Morais J
    Arch Environ Contam Toxicol; 2013 Jul; 65(1):67-77. PubMed ID: 23430293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of soil properties on the toxicity of TiO₂ nanoparticles on carbon mineralization and bacterial abundance.
    Simonin M; Guyonnet JP; Martins JM; Ginot M; Richaume A
    J Hazard Mater; 2015; 283():529-35. PubMed ID: 25464292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of nanoparticles on transcriptional regulation of catabolic genes of petroleum hydrocarbon-degrading bacteria in contaminated soil microcosms.
    El-Sayed WS; Elbahloul Y; Saad ME; Hanafy AM; Hegazi AH; ElShafei GMS; Elbadry M
    J Basic Microbiol; 2019 Feb; 59(2):166-180. PubMed ID: 30468270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils.
    Barrutia O; Garbisu C; Epelde L; Sampedro MC; Goicolea MA; Becerril JM
    Sci Total Environ; 2011 Sep; 409(19):4087-93. PubMed ID: 21741073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enantiomer/stereoisomer-specific residues of metalaxyl, napropamide, triticonazole, and metconazole in agricultural soils across China.
    Shen Y; Yao X; Jin S; Yang F
    Environ Monit Assess; 2021 Nov; 193(12):773. PubMed ID: 34741224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influences of plant species composition, fertilisation and Lolium perenne ingression on soil microbial community structure in three Irish grasslands.
    Liliensiek AK; Thakuria D; Clipson N
    Microb Ecol; 2012 Apr; 63(3):509-21. PubMed ID: 22159498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.