These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32936624)

  • 41. Root uptake and phytotoxicity of ZnO nanoparticles.
    Lin D; Xing B
    Environ Sci Technol; 2008 Aug; 42(15):5580-5. PubMed ID: 18754479
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans.
    Khare P; Sonane M; Pandey R; Ali S; Gupta KC; Satish A
    J Biomed Nanotechnol; 2011 Feb; 7(1):116-7. PubMed ID: 21485831
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Uptake and accumulation of phenanthrene and pyrene in spiked soils by Ryegrass (Lolium perenne L.).
    Xu SY; Chen YX; Lin Q; Wu WX; Xue SG; Shen CF
    J Environ Sci (China); 2005; 17(5):817-22. PubMed ID: 16313010
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enantioselective degradation of metalaxyl in cucumber, cabbage, spinach and pakchoi.
    Wang M; Zhang Q; Cong L; Yin W; Wang M
    Chemosphere; 2014 Jan; 95():241-6. PubMed ID: 24080002
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metalaxyl: persistence, degradation, metabolism, and analytical methods.
    Sukul P; Spiteller M
    Rev Environ Contam Toxicol; 2000; 164():1-26. PubMed ID: 12587832
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of sorption-desorption processes for metalaxyl in natural and artificial soils.
    Sukul P; Lamshöft M; Zühlke S; Spiteller M
    J Environ Sci Health B; 2013; 48(6):431-41. PubMed ID: 23452208
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles.
    Ge Y; Schimel JP; Holden PA
    Appl Environ Microbiol; 2012 Sep; 78(18):6749-58. PubMed ID: 22798374
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enantiomerization and enantioselective bioaccumulation of metalaxyl in Tenebrio molitor larvae.
    Gao Y; Wang H; Qin F; Xu P; Lv X; Li J; Guo B
    Chirality; 2014 Feb; 26(2):88-94. PubMed ID: 24302540
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combined Toxicity of Nano-ZnO and Nano-TiO2: From Single- to Multinanomaterial Systems.
    Tong T; Wilke CM; Wu J; Binh CT; Kelly JJ; Gaillard JF; Gray KA
    Environ Sci Technol; 2015 Jul; 49(13):8113-23. PubMed ID: 26070110
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil.
    Chai H; Yao J; Sun J; Zhang C; Liu W; Zhu M; Ceccanti B
    Bull Environ Contam Toxicol; 2015 Apr; 94(4):490-5. PubMed ID: 25636440
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Characterization of Cr Tolerance and Accumulation in
    Dong BB; Chen YY; Hui HX; Lu WJ; Yang XQ; Liu YF
    Huan Jing Ke Xue; 2016 Oct; 37(10):4044-4053. PubMed ID: 29964442
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enantioselective Effects of Metalaxyl Enantiomers on Breast Cancer Cells Metabolic Profiling Using HPLC-QTOF-Based Metabolomics.
    Zhang P; Zhu W; Wang D; Yan J; Wang Y; He L
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28085117
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sorptive behavior of the phenylamide fungicides, mefenoxam and metalaxyl, and their acid metabolite in typical Cameroonian and German soils.
    Monkiedje A; Spiteller M
    Chemosphere; 2002 Nov; 49(6):659-68. PubMed ID: 12430653
    [TBL] [Abstract][Full Text] [Related]  

  • 54. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil.
    Du W; Sun Y; Ji R; Zhu J; Wu J; Guo H
    J Environ Monit; 2011 Apr; 13(4):822-8. PubMed ID: 21267473
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of two different biochars on remediation of Cd-contaminated soil and Cd uptake by Lolium perenne.
    Li L; Jia Z; Ma H; Bao W; Li X; Tan H; Xu F; Xu H; Li Y
    Environ Geochem Health; 2019 Oct; 41(5):2067-2080. PubMed ID: 30810981
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of PM2.5 airborne particulates with ZnO and TiO
    Baysal A; Saygin H; Ustabasi GS
    Environ Monit Assess; 2017 Dec; 190(1):34. PubMed ID: 29264728
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community.
    Xu J; Luo X; Wang Y; Feng Y
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):6026-6035. PubMed ID: 29238929
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction of zinc oxide nanoparticles with soil: Insights into the chemical and biological properties.
    Verma Y; Singh SK; Jatav HS; Rajput VD; Minkina T
    Environ Geochem Health; 2022 Jan; 44(1):221-234. PubMed ID: 33864175
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluating the enantioselective degradation and novel metabolites following a single oral dose of metalaxyl in mice.
    Zhang P; Zhu W; Qiu J; Wang D; Wang X; Wang Y; Zhou Z
    Pestic Biochem Physiol; 2014 Nov; 116():32-9. PubMed ID: 25454518
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Can low concentrations of metal oxide and Ag loaded metal oxide nanoparticles pose a risk to stream plant litter microbial decomposers?
    Jain A; Kumar S; Seena S
    Sci Total Environ; 2019 Feb; 653():930-937. PubMed ID: 30759618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.