These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32936643)

  • 21. Mechanism of iron carbonyl-catalyzed hydrogenation of ethylene. 1. Theoretical exploration of molecular pathways.
    Asatryan R; Ruckenstein E
    J Phys Chem A; 2013 Oct; 117(42):10912-32. PubMed ID: 24063638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dinitrogen Fixation and Reduction by Ta
    Zhao Y; Cui JT; Wang M; Valdivielso DY; Fielicke A; Hu LR; Cheng X; Liu QY; Li ZY; He SG; Ma JB
    J Am Chem Soc; 2019 Aug; 141(32):12592-12600. PubMed ID: 31314515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.
    del Rosal I; Maron L; Poteau R; Jolibois F
    Dalton Trans; 2008 Aug; (30):3959-70. PubMed ID: 18648699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new and different insight into the promotion mechanisms of Ga for the hydrogenation of carbon dioxide to methanol over a Ga-doped Ni(211) bimetallic catalyst.
    Tang Q; Ji W; Russell CK; Zhang Y; Fan M; Shen Z
    Nanoscale; 2019 May; 11(20):9969-9979. PubMed ID: 31070648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CO
    Liu G; Zhu Z; Marshall M; Blankenhorn M; Bowen KH
    J Phys Chem A; 2021 Mar; 125(8):1747-1753. PubMed ID: 33620232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lattice-Hydride Mechanism in Electrocatalytic CO
    Tang Q; Lee Y; Li DY; Choi W; Liu CW; Lee D; Jiang DE
    J Am Chem Soc; 2017 Jul; 139(28):9728-9736. PubMed ID: 28640611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon Dioxide Insertion into Bridging Iron Hydrides: Kinetic and Mechanistic Studies.
    Hong DH; Murray LJ
    Eur J Inorg Chem; 2019 Apr; 2019(15):2146-2153. PubMed ID: 31787843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalytic hydrogenation of CO
    Esrafili MD; Sharifi F; Dinparast L
    J Mol Graph Model; 2017 Oct; 77():143-152. PubMed ID: 28858642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dinitrogen and Carbon Dioxide Activation to Form C-N Bonds at Room Temperature: A New Mechanism Revealed by Experimental and Theoretical Studies.
    Wang M; Chu LY; Li ZY; Messinis AM; Ding YQ; Hu L; Ma JB
    J Phys Chem Lett; 2021 Apr; 12(14):3490-3496. PubMed ID: 33792315
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CO
    Grasso ML; Puszkiel J; Fernández Albanesi L; Dornheim M; Pistidda C; Gennari FC
    Phys Chem Chem Phys; 2019 Sep; 21(36):19825-19834. PubMed ID: 31495854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions: two catalytic systems differing in the nature of the rate determining step.
    Ogo S; Kabe R; Hayashi H; Harada R; Fukuzumi S
    Dalton Trans; 2006 Oct; (39):4657-63. PubMed ID: 17028673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.
    Chakraborty S; Bhattacharya P; Dai H; Guan H
    Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two Carbon Dioxide Molecules Consecutively Reduced by Metal-Free B
    Chen ZY; Wang M; Ding YQ; Ma JB
    J Phys Chem A; 2023 Apr; 127(14):3082-3087. PubMed ID: 37014705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon-carbon bond formation in the reaction of hydrated carbon dioxide radical anions with 3-butyn-1-ol.
    Herburger A; Ončák M; Barwa E; van der Linde C; Beyer MK
    Int J Mass Spectrom; 2019 Jan; 435():101-106. PubMed ID: 33209089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ligand-Controlled CO2 Activation Mediated by Cationic Titanium Hydride Complexes, [LTiH](+) (L=Cp2 , O).
    Tang SY; Rijs NJ; Li J; Schlangen M; Schwarz H
    Chemistry; 2015 Jun; 21(23):8483-90. PubMed ID: 25940738
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design.
    Ge H; Chen X; Yang X
    Chemistry; 2017 Jul; 23(37):8850-8856. PubMed ID: 28409860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determinant Role of Electrogenerated Reactive Nucleophilic Species on Selectivity during Reduction of CO
    Göttle AJ; Koper MTM
    J Am Chem Soc; 2018 Apr; 140(14):4826-4834. PubMed ID: 29551059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A highly active copper catalyst for the hydrogenation of carbon dioxide to formate under ambient conditions.
    Chaudhary K; Trivedi M; Masram DT; Kumar A; Kumar G; Husain A; Rath NP
    Dalton Trans; 2020 Mar; 49(9):2994-3000. PubMed ID: 32083266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploiting metal-ligand bifunctional reactions in the design of iron asymmetric hydrogenation catalysts.
    Morris RH
    Acc Chem Res; 2015 May; 48(5):1494-502. PubMed ID: 25897779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.