These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32936651)

  • 1. Open-Channel Capillary Trees and Capillary Pumping.
    Lee JJ; Berthier J; Kearney KE; Berthier E; Theberge AB
    Langmuir; 2020 Nov; 36(43):12795-12803. PubMed ID: 32936651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced capillary pumping using open-channel capillary trees with integrated paper pads.
    Tokihiro JC; Tu WC; Berthier J; Lee JJ; Dostie AM; Khor JW; Eakman M; Theberge AB; Berthier E
    Phys Fluids (1994); 2023 Aug; 35(8):082120. PubMed ID: 37675268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary Flow in Open Microgrooves: Bifurcations and Networks.
    Lee JJ; Berthier J; Theberge AB; Berthier E
    Langmuir; 2019 Aug; 35(32):10667-10675. PubMed ID: 31318573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip.
    Pompano RR; Platt CE; Karymov MA; Ismagilov RF
    Langmuir; 2012 Jan; 28(3):1931-41. PubMed ID: 22233156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet Behavior in Open Biphasic Microfluidics.
    Lee JJ; Berthier J; Brakke KA; Dostie AM; Theberge AB; Berthier E
    Langmuir; 2018 May; 34(18):5358-5366. PubMed ID: 29692173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the halt of spontaneous capillary flows in diverging open channels.
    Berthier J; Brakke KA; Gosselin D; Navarro F; Belgacem N; Chaussy D; Berthier E
    Med Eng Phys; 2017 Oct; 48():75-80. PubMed ID: 28619593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic pressure in paper (μPiP): rapid prototyping and low-cost liquid handling for on-chip diagnostics.
    Islam MN; Yost JW; Gagnon ZR
    Analyst; 2022 Feb; 147(4):587-596. PubMed ID: 35037668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet Incubation and Splitting in Open Microfluidic Channels.
    Berry SB; Lee JJ; Berthier J; Berthier E; Theberge AB
    Anal Methods; 2019 Sep; 11(35):4528-4536. PubMed ID: 32528558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model experiments on the effect of bifurcations on capillary blood flow and oxygen transport.
    Gaehtgens P; Pries A; Albrecht KH
    Pflugers Arch; 1979 Jun; 380(2):115-20. PubMed ID: 573438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards combinatorial mixing devices without any pumps by open-capillary channels: fundamentals and applications.
    Tani M; Kawano R; Kamiya K; Okumura K
    Sci Rep; 2015 Jun; 5():10263. PubMed ID: 26103562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow control in a laminate capillary-driven microfluidic device.
    Jang I; Kang H; Song S; Dandy DS; Geiss BJ; Henry CS
    Analyst; 2021 Mar; 146(6):1932-1939. PubMed ID: 33492316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Capillary-Driven Flow for Paper-Based Microfluidic Channels.
    Songok J; Toivakka M
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30523-30530. PubMed ID: 27750422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary pumping independent of the liquid surface energy and viscosity.
    Guo W; Hansson J; van der Wijngaart W
    Microsyst Nanoeng; 2018; 4():2. PubMed ID: 31057892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary Flow-Driven and Magnetically Actuated Multi-Use Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms.
    Peshin S; George D; Shiri R; Kulinsky L; Madou M
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Open-channel microfluidic chip based on shape memory polymer for controllable liquid transport.
    Ye WQ; Liu XP; Ma RF; Yang CG; Xu ZR
    Lab Chip; 2023 Apr; 23(8):2068-2074. PubMed ID: 36928455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics.
    Hassan SU; Tariq A; Noreen Z; Donia A; Zaidi SZJ; Bokhari H; Zhang X
    Diagnostics (Basel); 2020 Jul; 10(8):. PubMed ID: 32708045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser micromachined hybrid open/paper microfluidic chips.
    Chumo B; Muluneh M; Issadore D
    Biomicrofluidics; 2013; 7(6):64109. PubMed ID: 24396543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow.
    Songok J; Tuominen M; Teisala H; Haapanen J; Mäkelä J; Kuusipalo J; Toivakka M
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20060-6. PubMed ID: 25336235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction.
    Zhang Y; Li Y; Luan X; Li X; Jiang J; Fan Y; Li M; Huang C; Zhang L; Zhao Y
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Parametric Analysis of Capillary Height in Single-Layer, Small-Scale Microfluidic Artificial Lungs.
    Ma LJ; Akor EA; Thompson AJ; Potkay JA
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.