These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 32936770)
1. Identification of Risk Factors and Symptoms of COVID-19: Analysis of Biomedical Literature and Social Media Data. Jeon J; Baruah G; Sarabadani S; Palanica A J Med Internet Res; 2020 Oct; 22(10):e20509. PubMed ID: 32936770 [TBL] [Abstract][Full Text] [Related]
2. Using Reports of Symptoms and Diagnoses on Social Media to Predict COVID-19 Case Counts in Mainland China: Observational Infoveillance Study. Shen C; Chen A; Luo C; Zhang J; Feng B; Liao W J Med Internet Res; 2020 May; 22(5):e19421. PubMed ID: 32452804 [TBL] [Abstract][Full Text] [Related]
3. Temporal and Location Variations, and Link Categories for the Dissemination of COVID-19-Related Information on Twitter During the SARS-CoV-2 Outbreak in Europe: Infoveillance Study. Pobiruchin M; Zowalla R; Wiesner M J Med Internet Res; 2020 Aug; 22(8):e19629. PubMed ID: 32790641 [TBL] [Abstract][Full Text] [Related]
4. Epidemiology and clinical characteristics of 43 COVID-19 patients in Weifang, China. Wang Q; Zheng S; Tan W; Qi L; Shao W; Zhang M; Sun X Ann Palliat Med; 2020 Sep; 9(5):2993-2999. PubMed ID: 32819125 [TBL] [Abstract][Full Text] [Related]
5. Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single center analysis. Huang Y; Tu M; Wang S; Chen S; Zhou W; Chen D; Zhou L; Wang M; Zhao Y; Zeng W; Huang Q; Xu H; Liu Z; Guo L Travel Med Infect Dis; 2020; 36():101606. PubMed ID: 32114074 [No Abstract] [Full Text] [Related]
6. Conversations and Medical News Frames on Twitter: Infodemiological Study on COVID-19 in South Korea. Park HW; Park S; Chong M J Med Internet Res; 2020 May; 22(5):e18897. PubMed ID: 32325426 [TBL] [Abstract][Full Text] [Related]
7. Machine Learning to Detect Self-Reporting of Symptoms, Testing Access, and Recovery Associated With COVID-19 on Twitter: Retrospective Big Data Infoveillance Study. Mackey T; Purushothaman V; Li J; Shah N; Nali M; Bardier C; Liang B; Cai M; Cuomo R JMIR Public Health Surveill; 2020 Jun; 6(2):e19509. PubMed ID: 32490846 [TBL] [Abstract][Full Text] [Related]
8. Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study. Abd-Alrazaq A; Alhuwail D; Househ M; Hamdi M; Shah Z J Med Internet Res; 2020 Apr; 22(4):e19016. PubMed ID: 32287039 [TBL] [Abstract][Full Text] [Related]
9. COVID-19 and the 5G Conspiracy Theory: Social Network Analysis of Twitter Data. Ahmed W; Vidal-Alaball J; Downing J; López Seguí F J Med Internet Res; 2020 May; 22(5):e19458. PubMed ID: 32352383 [TBL] [Abstract][Full Text] [Related]
10. Initial Observations of COVID-19 in US Children. Agha R; Kojaoghlanian T; Avner JR Hosp Pediatr; 2020 Oct; 10(10):902-905. PubMed ID: 32636210 [TBL] [Abstract][Full Text] [Related]
11. Public Perceptions and Attitudes Toward COVID-19 Nonpharmaceutical Interventions Across Six Countries: A Topic Modeling Analysis of Twitter Data. Doogan C; Buntine W; Linger H; Brunt S J Med Internet Res; 2020 Sep; 22(9):e21419. PubMed ID: 32784190 [TBL] [Abstract][Full Text] [Related]
12. Mining the Characteristics of COVID-19 Patients in China: Analysis of Social Media Posts. Huang C; Xu X; Cai Y; Ge Q; Zeng G; Li X; Zhang W; Ji C; Yang L J Med Internet Res; 2020 May; 22(5):e19087. PubMed ID: 32401210 [TBL] [Abstract][Full Text] [Related]
13. Public discourse and sentiment during the COVID 19 pandemic: Using Latent Dirichlet Allocation for topic modeling on Twitter. Xue J; Chen J; Chen C; Zheng C; Li S; Zhu T PLoS One; 2020; 15(9):e0239441. PubMed ID: 32976519 [TBL] [Abstract][Full Text] [Related]
14. Identifying common baseline clinical features of COVID-19: a scoping review. Ferreira-Santos D; Maranhão P; Monteiro-Soares M; BMJ Open; 2020 Sep; 10(9):e041079. PubMed ID: 32938604 [TBL] [Abstract][Full Text] [Related]
15. Clinical Characteristics of Patients with Severe Pneumonia Caused by the SARS-CoV-2 in Wuhan, China. Wang Y; Zhou Y; Yang Z; Xia D; Hu Y; Geng S Respiration; 2020; 99(8):649-657. PubMed ID: 32841948 [TBL] [Abstract][Full Text] [Related]
16. Topics, Trends, and Sentiments of Tweets About the COVID-19 Pandemic: Temporal Infoveillance Study. Chandrasekaran R; Mehta V; Valkunde T; Moustakas E J Med Internet Res; 2020 Oct; 22(10):e22624. PubMed ID: 33006937 [TBL] [Abstract][Full Text] [Related]
17. Characteristics of the initial patients hospitalized for COVID-19: a single-center report. Medetalibeyoğlu A; Şenkal N; Çapar G; Köse M; Tükek T Turk J Med Sci; 2020 Aug; 50(5):1436-1439. PubMed ID: 32490641 [No Abstract] [Full Text] [Related]
18. Characteristics of COVID-19 at a non-COVID tertiary pulmonary care centre in Delhi, India. Goel N; Spalgais S; Mrigpuri P; Khanna M; Menon B; Kumar R Monaldi Arch Chest Dis; 2020 Nov; 90(4):. PubMed ID: 33169599 [TBL] [Abstract][Full Text] [Related]
19. Clinical course and characteristics of patients with coronavirus disease 2019 in Wuhan, China: a single-centered, retrospective, observational study. Liu Y; Liu L; Wang Y; Du X; Ma H; Yao J Aging (Albany NY); 2020 Aug; 12(16):15946-15953. PubMed ID: 32833671 [TBL] [Abstract][Full Text] [Related]
20. Creating COVID-19 Stigma by Referencing the Novel Coronavirus as the "Chinese virus" on Twitter: Quantitative Analysis of Social Media Data. Budhwani H; Sun R J Med Internet Res; 2020 May; 22(5):e19301. PubMed ID: 32343669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]