These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 32936825)

  • 1. DeepHE: Accurately predicting human essential genes based on deep learning.
    Zhang X; Xiao W; Xiao W
    PLoS Comput Biol; 2020 Sep; 16(9):e1008229. PubMed ID: 32936825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EPGAT: Gene Essentiality Prediction With Graph Attention Networks.
    Schapke J; Tavares A; Recamonde-Mendoza M
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1615-1626. PubMed ID: 33497339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepEP: a deep learning framework for identifying essential proteins.
    Zeng M; Li M; Wu FX; Li Y; Pan Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):506. PubMed ID: 31787076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network Embedding the Protein-Protein Interaction Network for Human Essential Genes Identification.
    Dai W; Chang Q; Peng W; Zhong J; Li Y
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 32023848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning framework for identifying essential proteins based on multiple biological information.
    Yue Y; Ye C; Peng PY; Zhai HX; Ahmad I; Xia C; Wu YZ; Zhang YH
    BMC Bioinformatics; 2022 Aug; 23(1):318. PubMed ID: 35927611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Learning Framework for Identifying Essential Proteins by Integrating Multiple Types of Biological Information.
    Zeng M; Li M; Fei Z; Wu FX; Li Y; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):296-305. PubMed ID: 30736002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Computational Framework Based on Ensemble Deep Neural Networks for Essential Genes Identification.
    Le NQK; Do DT; Hung TNK; Lam LHT; Huynh TT; Nguyen NTK
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-WET: a deep learning-based approach for predicting DNA-binding proteins using word embedding techniques with weighted features.
    Mahmud SMH; Goh KOM; Hosen MF; Nandi D; Shoombuatong W
    Sci Rep; 2024 Feb; 14(1):2961. PubMed ID: 38316843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EPI-SF: essential protein identification in protein interaction networks using sequence features.
    Saha S; Chatterjee P; Basu S; Nasipuri M
    PeerJ; 2024; 12():e17010. PubMed ID: 38495766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MaTPIP: A deep-learning architecture with eXplainable AI for sequence-driven, feature mixed protein-protein interaction prediction.
    Ghosh S; Mitra P
    Comput Methods Programs Biomed; 2024 Feb; 244():107955. PubMed ID: 38064959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ACDMBI: A deep learning model based on community division and multi-source biological information fusion predicts essential proteins.
    Lu P; Tian J
    Comput Biol Chem; 2024 Oct; 112():108115. PubMed ID: 38865861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting DNA Methylation States with Hybrid Information Based Deep-Learning Model.
    Fu L; Peng Q; Chai L
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1721-1728. PubMed ID: 30951477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PCP-GC-LM: single-sequence-based protein contact prediction using dual graph convolutional neural network and convolutional neural network.
    Ouyang J; Gao Y; Yang Y
    BMC Bioinformatics; 2024 Sep; 25(1):287. PubMed ID: 39223474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DCSE:Double-Channel-Siamese-Ensemble model for protein protein interaction prediction.
    Chen W; Wang S; Song T; Li X; Han P; Gao C
    BMC Genomics; 2022 Aug; 23(1):555. PubMed ID: 35922751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning.
    Du T; Liao L; Wu CH; Sun B
    Methods; 2016 Nov; 110():97-105. PubMed ID: 27282356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of essential genes in prokaryote based on artificial neural network.
    Xu L; Guo Z; Liu X
    Genes Genomics; 2020 Jan; 42(1):97-106. PubMed ID: 31736009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Studies on Resampling Techniques in Machine Learning and Deep Learning Models for Drug-Target Interaction Prediction.
    Azlim Khan AK; Ahamed Hassain Malim NH
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.