These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 32936940)
1. Magnaporthe oryzae nucleoside diphosphate kinase is required for metabolic homeostasis and redox-mediated host innate immunity suppression. Rocha RO; Wilson RA Mol Microbiol; 2020 Nov; 114(5):789-807. PubMed ID: 32936940 [TBL] [Abstract][Full Text] [Related]
2. Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzae. Fernandez J; Marroquin-Guzman M; Wilson RA PLoS Pathog; 2014 Sep; 10(9):e1004354. PubMed ID: 25188286 [TBL] [Abstract][Full Text] [Related]
3. Two Magnaporthe appressoria-specific (MAS) proteins, MoMas3 and MoMas5, are required for suppressing host innate immunity and promoting biotrophic growth in rice cells. Gong Z; Ning N; Li Z; Xie X; Wilson RA; Liu W Mol Plant Pathol; 2022 Sep; 23(9):1290-1302. PubMed ID: 35526236 [TBL] [Abstract][Full Text] [Related]
4. The Magnaporthe oryzae nitrooxidative stress response suppresses rice innate immunity during blast disease. Marroquin-Guzman M; Hartline D; Wright JD; Elowsky C; Bourret TJ; Wilson RA Nat Microbiol; 2017 Apr; 2():17054. PubMed ID: 28418377 [TBL] [Abstract][Full Text] [Related]
5. TOR-autophagy branch signaling via Imp1 dictates plant-microbe biotrophic interface longevity. Sun G; Elowsky C; Li G; Wilson RA PLoS Genet; 2018 Nov; 14(11):e1007814. PubMed ID: 30462633 [TBL] [Abstract][Full Text] [Related]
6. Genetic evidence for Wilson RA; Fernandez J; Rocha RO; Marroquin-Guzman M; Wright JD Microbiology (Reading); 2019 Nov; 165(11):1198-1202. PubMed ID: 31517594 [TBL] [Abstract][Full Text] [Related]
7. Growth in rice cells requires de novo purine biosynthesis by the blast fungus Magnaporthe oryzae. Fernandez J; Yang KT; Cornwell KM; Wright JD; Wilson RA Sci Rep; 2013; 3():2398. PubMed ID: 23928947 [TBL] [Abstract][Full Text] [Related]
8. Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity. Singh R; Dangol S; Chen Y; Choi J; Cho YS; Lee JE; Choi MO; Jwa NS Mol Cells; 2016 May; 39(5):426-38. PubMed ID: 27126515 [TBL] [Abstract][Full Text] [Related]
9. Terminating rice innate immunity induction requires a network of antagonistic and redox-responsive E3 ubiquitin ligases targeting a fungal sirtuin. Li G; Qi X; Sun G; Rocha RO; Segal LM; Downey KS; Wright JD; Wilson RA New Phytol; 2020 Apr; 226(2):523-540. PubMed ID: 31828801 [TBL] [Abstract][Full Text] [Related]
10. Role of Two Metacaspases in Development and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae. Fernandez J; Lopez V; Kinch L; Pfeifer MA; Gray H; Garcia N; Grishin NV; Khang CH; Orth K mBio; 2021 Feb; 12(1):. PubMed ID: 33563831 [TBL] [Abstract][Full Text] [Related]
11. Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease. Fernandez J; Wilson RA PLoS One; 2014; 9(1):e87300. PubMed ID: 24475267 [TBL] [Abstract][Full Text] [Related]
13. MoRgs3 functions in intracellular reactive oxygen species perception-integrated cAMP signaling to promote appressorium formation in Zhang R; Liu X; Xu J; Chen C; Tang Z; Wu C; Li X; Su L; Liu M; Yang L; Li G; Zhang H; Wang P; Zhang Z mBio; 2024 Aug; 15(8):e0099624. PubMed ID: 38980036 [TBL] [Abstract][Full Text] [Related]
14. Effector-triggered susceptibility by the rice blast fungus Magnaporthe oryzae. Oliveira-Garcia E; Yan X; Oses-Ruiz M; de Paula S; Talbot NJ New Phytol; 2024 Feb; 241(3):1007-1020. PubMed ID: 38073141 [TBL] [Abstract][Full Text] [Related]
15. An S-(hydroxymethyl)glutathione dehydrogenase is involved in conidiation and full virulence in the rice blast fungus Magnaporthe oryzae. Zhang Z; Wang J; Chai R; Qiu H; Jiang H; Mao X; Wang Y; Liu F; Sun G PLoS One; 2015; 10(3):e0120627. PubMed ID: 25793615 [TBL] [Abstract][Full Text] [Related]
16. Spermine-mediated tight sealing of the Magnaporthe oryzae appressorial pore-rice leaf surface interface. Rocha RO; Elowsky C; Pham NTT; Wilson RA Nat Microbiol; 2020 Dec; 5(12):1472-1480. PubMed ID: 32929190 [TBL] [Abstract][Full Text] [Related]
17. Live-cell imaging of rice cytological changes reveals the importance of host vacuole maintenance for biotrophic invasion by blast fungus, Magnaporthe oryzae. Mochizuki S; Minami E; Nishizawa Y Microbiologyopen; 2015 Dec; 4(6):952-66. PubMed ID: 26472068 [TBL] [Abstract][Full Text] [Related]
18. Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast. Kou Y; Tan YH; Ramanujam R; Naqvi NI New Phytol; 2017 Apr; 214(1):330-342. PubMed ID: 27898176 [TBL] [Abstract][Full Text] [Related]
19. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae. He M; Xu Y; Chen J; Luo Y; Lv Y; Su J; Kershaw MJ; Li W; Wang J; Yin J; Zhu X; Liu X; Chern M; Ma B; Wang J; Qin P; Chen W; Wang Y; Wang W; Ren Z; Wu X; Li P; Li S; Peng Y; Lin F; Talbot NJ; Chen X Autophagy; 2018; 14(9):1543-1561. PubMed ID: 29929416 [TBL] [Abstract][Full Text] [Related]
20. Magnaporthe oryzae Glycine-Rich Secretion Protein, Rbf1 Critically Participates in Pathogenicity through the Focal Formation of the Biotrophic Interfacial Complex. Nishimura T; Mochizuki S; Ishii-Minami N; Fujisawa Y; Kawahara Y; Yoshida Y; Okada K; Ando S; Matsumura H; Terauchi R; Minami E; Nishizawa Y PLoS Pathog; 2016 Oct; 12(10):e1005921. PubMed ID: 27711180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]