These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 3293704)

  • 1. Survey of neuropeptide-like immunoreactivity in supramedullary neurons of Coris julis (L.).
    Benedetti I; Mola L
    Brain Res; 1988 May; 449(1-2):373-6. PubMed ID: 3293704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The supramedullary cells of the teleost Coris julis (L.): a noradrenergic neuronal system.
    Mola L; Sassi D; Cuoghi B
    Eur J Histochem; 2002; 46(4):329-32. PubMed ID: 12597617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid phosphatase activity in the supramedullary neurons of Coris julis (L.).
    Mola L; Marini M; Benedetti I
    Eur J Histochem; 1992; 36(2):233-6. PubMed ID: 1380857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroanatomical and immunohistochemical studies on the dorsal neurons in the spinal cord of Trigla lucerna L. and Scorpaena porcus L. (Scorpaeniformes).
    Benedetti I; Mola L; Marini M; Calzolari C
    Ann Anat; 1993 Feb; 175(1):77-80. PubMed ID: 8465979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survey of neuropeptide-like immunoreactivity in the lamprey spinal cord.
    Buchanan JT; Brodin L; Hökfelt T; Van Dongen PA; Grillner S
    Brain Res; 1987 Apr; 408(1-2):299-302. PubMed ID: 3297250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunohistochemical studies of cholecystokininlike peptides and their relation to 5-HT, CGRP, and bombesin immunoreactivities in the brainstem and spinal cord of lampreys.
    Brodin L; Buchanan JT; Hökfelt T; Grillner S; Rehfeld JF; Frey P; Verhofstad AA; Dockray GJ; Walsh JH
    J Comp Neurol; 1988 May; 271(1):1-18. PubMed ID: 3260247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of TRH-like immunoreactivity with special reference to coexistence with other neuroactive compounds.
    Hökfelt T; Tsuruo Y; Ulfhake B; Cullheim S; Arvidsson U; Foster GA; Schultzberg M; Schalling M; Arborelius L; Freedman J
    Ann N Y Acad Sci; 1989; 553():76-105. PubMed ID: 2497689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gastrin/CCK-ergic innervation of cutaneous mucous gland by the supramedullary cells of the puffer fish Takifugu niphobles.
    Funakoshi K; Kadota T; Atobe Y; Nakano M; Goris RC; Kishida R
    Neurosci Lett; 1998 Dec; 258(3):171-4. PubMed ID: 9885958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroanatomy of morphine-modulating peptides.
    Panula P; Kivipelto L; Nieminen O; Majane EA; Yang HY
    Med Biol; 1987; 65(2-3):127-35. PubMed ID: 3657312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CGRP-like immunoreactivity in A11 dopamine neurons projecting to the spinal cord and a note on CGRP-CCK cross-reactivity.
    Orazzo C; Pieribone VA; Ceccatelli S; Terenius L; Hökfelt T
    Brain Res; 1993 Jan; 600(1):39-48. PubMed ID: 8422589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The supramedullary neurons of fish: present status and goals for the future.
    Mola L; Cuoghi B
    Brain Res Bull; 2004 Sep; 64(3):195-204. PubMed ID: 15464855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunocytochemical demonstration of serotonergic cells, terminals and axons in the spinal cord of the stingray, Dasyatis sabina.
    Ritchie TC; Leonard RB
    Brain Res; 1982 May; 240(2):334-7. PubMed ID: 7049319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence of neuropeptide K-like immunoreactivity in ventral horn cells of the chicken spinal cord during development.
    Villar MJ; Roa M; Huchet M; Changeux JP; Valentino KL; Hökfelt T
    Brain Res; 1991 Feb; 541(1):149-53. PubMed ID: 2029616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunohistochemical studies on cholecystokinin (CCK)-immunoreactive neurons in the rat using sequence specific antisera and with special reference to the caudate nucleus and primary sensory neurons.
    Hökfelt T; Herrera-Marschitz M; Seroogy K; Ju G; Staines WA; Holets V; Schalling M; Ungerstedt U; Post C; Rehfeld JF
    J Chem Neuroanat; 1988; 1(1):11-51. PubMed ID: 3077312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dye coupling evidence for gap junctions between supramedullary/dorsal neurons of the cunner, Tautogolabrus adspersus.
    Zottoli SJ; Arnolds DE; Asamoah NO; Chevez C; Fuller SN; Hiza NA; Nierman JE; Taboada LA
    Biol Bull; 2001 Oct; 201(2):277-8. PubMed ID: 11687422
    [No Abstract]   [Full Text] [Related]  

  • 16. [Quantitative study on the variations in size and shape of the neurons of the magnocellular preoptic nucleus of the teleosts Gaidopsarus mediterraneus and Coris julis].
    Gómez-Segade P; Gómez-Segade LA; Anadón R
    Trab Inst Cajal; 1984; 75(1-4):107-12. PubMed ID: 6545973
    [No Abstract]   [Full Text] [Related]  

  • 17. Immunohistochemical evidence for the existence of novel mammalian neuropeptides related to the Hydra GLW-amide neuropeptide family.
    Hamaguchi-Hamada K; Fujisawa Y; Koizumi O; Muneoka Y; Okado N; Hamada S
    Cell Tissue Res; 2009 Jul; 337(1):15-25. PubMed ID: 19440733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuropeptides in spinal cord.
    Tohyama M; Shiotani Y
    Prog Brain Res; 1986; 66():177-218. PubMed ID: 3538167
    [No Abstract]   [Full Text] [Related]  

  • 19. Calcitonin gene-related peptide containing autonomic efferent pathways to the pelvic ganglia of the rat.
    Senba E; Tohyama M
    Brain Res; 1988 May; 449(1-2):386-90. PubMed ID: 3293705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunohistochemical analysis of the relation between 5-hydroxytryptamine- and neuropeptide-immunoreactive elements in the spinal cord of an amphibian (Xenopus laevis).
    Pieribone VA; Brodin L; Hökfelt T
    J Comp Neurol; 1994 Mar; 341(4):492-506. PubMed ID: 7515401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.