These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 32937088)

  • 1. Foreground stimuli and task engagement enhance neuronal adaptation to background noise in the inferior colliculus of macaques.
    Rocchi F; Ramachandran R
    J Neurophysiol; 2020 Nov; 124(5):1315-1326. PubMed ID: 32937088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal adaptation to sound statistics in the inferior colliculus of behaving macaques does not reduce the effectiveness of the masking noise.
    Rocchi F; Ramachandran R
    J Neurophysiol; 2018 Dec; 120(6):2819-2833. PubMed ID: 30256735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task Engagement Improves Neural Discriminability in the Auditory Midbrain of the Marmoset Monkey.
    Shaheen LA; Slee SJ; David SV
    J Neurosci; 2021 Jan; 41(2):284-297. PubMed ID: 33208469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern-sensitive neurons reveal encoding of complex auditory regularities in the rat inferior colliculus.
    Malmierca MS; Niño-Aguillón BE; Nieto-Diego J; Porteros Á; Pérez-González D; Escera C
    Neuroimage; 2019 Jan; 184():889-900. PubMed ID: 30296562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal disparity in signals and maskers affects signal detection in non-human primates.
    Rocchi F; Dylla ME; Bohlen PA; Ramachandran R
    Hear Res; 2017 Feb; 344():1-12. PubMed ID: 27770624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical differences in the encoding of sound and choice in the subcortical auditory system.
    Mackey CA; Dylla M; Bohlen P; Grigsby J; Hrnicek A; Mayfield J; Ramachandran R
    J Neurophysiol; 2023 Mar; 129(3):591-608. PubMed ID: 36651913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulus-specific adaptation and its dynamics in the inferior colliculus of rat.
    Zhao L; Liu Y; Shen L; Feng L; Hong B
    Neuroscience; 2011 May; 181():163-74. PubMed ID: 21284952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of auditory stimulus context on the representation of frequency in the gerbil inferior colliculus.
    Malone BJ; Semple MN
    J Neurophysiol; 2001 Sep; 86(3):1113-30. PubMed ID: 11535662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of rat inferior colliculus neurons to frequency distributions.
    Herrmann B; Parthasarathy A; Han EX; Obleser J; Bartlett EL
    J Neurophysiol; 2015 Nov; 114(5):2941-54. PubMed ID: 26354316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation in the auditory midbrain of the barn owl (Tyto alba) induced by tonal double stimulation.
    Singheiser M; Ferger R; von Campenhausen M; Wagner H
    Eur J Neurosci; 2012 Feb; 35(3):445-56. PubMed ID: 22288481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Midbrain-Level Neural Correlates of Behavioral Tone-in-Noise Detection: Dependence on Energy and Envelope Cues.
    Wang Y; Abrams KS; Carney LH; Henry KS
    J Neurosci; 2021 Aug; 41(34):7206-7223. PubMed ID: 34266898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Task-Related Plasticity of Spectrotemporal Receptive Fields in the Auditory Midbrain.
    Slee SJ; David SV
    J Neurosci; 2015 Sep; 35(38):13090-102. PubMed ID: 26400939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced representation of natural sound sequences in the ventral auditory midbrain.
    González-Palomares E; López-Jury L; García-Rosales F; Hechavarria JC
    Brain Struct Funct; 2021 Jan; 226(1):207-223. PubMed ID: 33315120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of tones and their modification by noise in nonhuman primates.
    Dylla M; Hrnicek A; Rice C; Ramachandran R
    J Assoc Res Otolaryngol; 2013 Aug; 14(4):547-60. PubMed ID: 23515749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of neurons in the inferior colliculus to dynamic interaural phase cues: evidence for a mechanism of binaural adaptation.
    McAlpine D; Jiang D; Shackleton TM; Palmer AR
    J Neurophysiol; 2000 Mar; 83(3):1356-65. PubMed ID: 10712463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative stimulus-specific adaptation of the natural sounds in the auditory cortex of the awake rat.
    Zhai YY; Sun ZH; Gong YM; Tang Y; Yu X
    Brain Struct Funct; 2019 Jun; 224(5):1753-1766. PubMed ID: 31004193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response adaptation in the barn owl's auditory space map.
    Ferger R; Pawlowsky K; Singheiser M; Wagner H
    J Neurophysiol; 2018 Mar; 119(3):1235-1247. PubMed ID: 29357460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation in the auditory space map of the barn owl.
    Gutfreund Y; Knudsen EI
    J Neurophysiol; 2006 Aug; 96(2):813-25. PubMed ID: 16707713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing.
    Willmore BD; Schoppe O; King AJ; Schnupp JW; Harper NS
    J Neurosci; 2016 Jan; 36(2):280-9. PubMed ID: 26758822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Background noise exerts diverse effects on the cortical encoding of foreground sounds.
    Malone BJ; Heiser MA; Beitel RE; Schreiner CE
    J Neurophysiol; 2017 Aug; 118(2):1034-1054. PubMed ID: 28490644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.