These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 32937106)

  • 1. A Genetically Defined Compartmentalized Striatal Direct Pathway for Negative Reinforcement.
    Xiao X; Deng H; Furlan A; Yang T; Zhang X; Hwang GR; Tucciarone J; Wu P; He M; Palaniswamy R; Ramakrishnan C; Ritola K; Hantman A; Deisseroth K; Osten P; Huang ZJ; Li B
    Cell; 2020 Oct; 183(1):211-227.e20. PubMed ID: 32937106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed action-outcome representation by striatal striosome-matrix compartments detected with a mouse cost-benefit foraging task.
    Bloem B; Huda R; Amemori KI; Abate AS; Krishna G; Wilson AL; Carter CW; Sur M; Graybiel AM
    Nat Commun; 2022 Mar; 13(1):1541. PubMed ID: 35318343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reward-Predictive Neural Activities in Striatal Striosome Compartments.
    Yoshizawa T; Ito M; Doya K
    eNeuro; 2018; 5(1):. PubMed ID: 29430520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Striatal mechanisms underlying movement, reinforcement, and punishment.
    Kravitz AV; Kreitzer AC
    Physiology (Bethesda); 2012 Jun; 27(3):167-77. PubMed ID: 22689792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Striatal dopamine D1 receptor suppression impairs reward-associative learning.
    Higa KK; Young JW; Ji B; Nichols DE; Geyer MA; Zhou X
    Behav Brain Res; 2017 Apr; 323():100-110. PubMed ID: 28143767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetically identified amygdala-striatal circuits for valence-specific behaviors.
    Zhang X; Guan W; Yang T; Furlan A; Xiao X; Yu K; An X; Galbavy W; Ramakrishnan C; Deisseroth K; Ritola K; Hantman A; He M; Josh Huang Z; Li B
    Nat Neurosci; 2021 Nov; 24(11):1586-1600. PubMed ID: 34663958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning.
    Morita K; Kawaguchi Y
    Eur J Neurosci; 2015 Aug; 42(4):2003-21. PubMed ID: 26095906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct roles for direct and indirect pathway striatal neurons in reinforcement.
    Kravitz AV; Tye LD; Kreitzer AC
    Nat Neurosci; 2012 Jun; 15(6):816-8. PubMed ID: 22544310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets.
    Awata H; Watanabe T; Hamanaka Y; Mito T; Noji S; Mizunami M
    Sci Rep; 2015 Nov; 5():15885. PubMed ID: 26521965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced striatal sensitivity to aversive reinforcement in adolescents versus adults.
    Galván A; McGlennen KM
    J Cogn Neurosci; 2013 Feb; 25(2):284-96. PubMed ID: 23163417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Striatal action-learning based on dopamine concentration.
    Morris G; Schmidt R; Bergman H
    Exp Brain Res; 2010 Jan; 200(3-4):307-17. PubMed ID: 19904530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motivational valence is determined by striatal melanocortin 4 receptors.
    Klawonn AM; Fritz M; Nilsson A; Bonaventura J; Shionoya K; Mirrasekhian E; Karlsson U; Jaarola M; Granseth B; Blomqvist A; Michaelides M; Engblom D
    J Clin Invest; 2018 Jul; 128(7):3160-3170. PubMed ID: 29911992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Striosomes and Matrisomes: Scaffolds for Dynamic Coupling of Volition and Action.
    Graybiel AM; Matsushima A
    Annu Rev Neurosci; 2023 Jul; 46():359-380. PubMed ID: 37068787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parcellation of the striatal complex into dorsal and ventral districts.
    Chen SY; Lu KM; Ko HA; Huang TH; Hao JH; Yan YT; Chang SL; Evans SM; Liu FC
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7418-7429. PubMed ID: 32170006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical roles for anterior insula and dorsal striatum in punishment-based avoidance learning.
    Palminteri S; Justo D; Jauffret C; Pavlicek B; Dauta A; Delmaire C; Czernecki V; Karachi C; Capelle L; Durr A; Pessiglione M
    Neuron; 2012 Dec; 76(5):998-1009. PubMed ID: 23217747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning.
    Kim SH; Yoon H; Kim H; Hamann S
    Soc Cogn Affect Neurosci; 2015 Sep; 10(9):1219-27. PubMed ID: 25680989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human thalamic low-frequency oscillations correlate with expected value and outcomes during reinforcement learning.
    Collomb-Clerc A; Gueguen MCM; Minotti L; Kahane P; Navarro V; Bartolomei F; Carron R; Regis J; Chabardès S; Palminteri S; Bastin J
    Nat Commun; 2023 Oct; 14(1):6534. PubMed ID: 37848435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses.
    Bloem B; Huda R; Sur M; Graybiel AM
    Elife; 2017 Dec; 6():. PubMed ID: 29251596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior.
    Hikida T; Kimura K; Wada N; Funabiki K; Nakanishi S
    Neuron; 2010 Jun; 66(6):896-907. PubMed ID: 20620875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations.
    Delgado MR; Locke HM; Stenger VA; Fiez JA
    Cogn Affect Behav Neurosci; 2003 Mar; 3(1):27-38. PubMed ID: 12822596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.