These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 32937679)
21. Identifying public concerns and reactions during the COVID-19 pandemic on Twitter: A text-mining analysis. Osakwe ZT; Ikhapoh I; Arora BK; Bubu OM Public Health Nurs; 2021 Mar; 38(2):145-151. PubMed ID: 33258149 [TBL] [Abstract][Full Text] [Related]
22. Emotional Distress During COVID-19 by Mental Health Conditions and Economic Vulnerability: Retrospective Analysis of Survey-Linked Twitter Data With a Semisupervised Machine Learning Algorithm. Ueda M; Watanabe K; Sueki H J Med Internet Res; 2023 Mar; 25():e44965. PubMed ID: 36809798 [TBL] [Abstract][Full Text] [Related]
23. Understanding Concerns, Sentiments, and Disparities Among Population Groups During the COVID-19 Pandemic Via Twitter Data Mining: Large-scale Cross-sectional Study. Zhang C; Xu S; Li Z; Hu S J Med Internet Res; 2021 Mar; 23(3):e26482. PubMed ID: 33617460 [TBL] [Abstract][Full Text] [Related]
24. What can we learn about the Ebola outbreak from tweets? Odlum M; Yoon S Am J Infect Control; 2015 Jun; 43(6):563-71. PubMed ID: 26042846 [TBL] [Abstract][Full Text] [Related]
25. Exploring experiences of COVID-19-positive individuals from social media posts. Guo JW; Sisler SM; Wang CY; Wallace AS Int J Nurs Pract; 2021 Oct; 27(5):e12986. PubMed ID: 34128296 [TBL] [Abstract][Full Text] [Related]
26. Dynamics of the Negative Discourse Toward COVID-19 Vaccines: Topic Modeling Study and an Annotated Data Set of Twitter Posts. Lindelöf G; Aledavood T; Keller B J Med Internet Res; 2023 Apr; 25():e41319. PubMed ID: 36877804 [TBL] [Abstract][Full Text] [Related]
27. Mining and Validating Social Media Data for COVID-19-Related Human Behaviors Between January and July 2020: Infodemiology Study. Daughton AR; Shelley CD; Barnard M; Gerts D; Watson Ross C; Crooker I; Nadiga G; Mukundan N; Vaquera Chavez NY; Parikh N; Pitts T; Fairchild G J Med Internet Res; 2021 May; 23(5):e27059. PubMed ID: 33882015 [TBL] [Abstract][Full Text] [Related]
28. Identifying #addiction concerns on twitter during the COVID-19 pandemic: A text mining analysis. Glowacki EM; Wilcox GB; Glowacki JB Subst Abus; 2021; 42(1):39-46. PubMed ID: 32970973 [TBL] [Abstract][Full Text] [Related]
29. Topics, Trends, and Sentiments of Tweets About the COVID-19 Pandemic: Temporal Infoveillance Study. Chandrasekaran R; Mehta V; Valkunde T; Moustakas E J Med Internet Res; 2020 Oct; 22(10):e22624. PubMed ID: 33006937 [TBL] [Abstract][Full Text] [Related]
30. Epidemiology from Tweets: Estimating Misuse of Prescription Opioids in the USA from Social Media. Chary M; Genes N; Giraud-Carrier C; Hanson C; Nelson LS; Manini AF J Med Toxicol; 2017 Dec; 13(4):278-286. PubMed ID: 28831738 [TBL] [Abstract][Full Text] [Related]
31. Texas Public Agencies' Tweets and Public Engagement During the COVID-19 Pandemic: Natural Language Processing Approach. Tang L; Liu W; Thomas B; Tran HTN; Zou W; Zhang X; Zhi D JMIR Public Health Surveill; 2021 Apr; 7(4):e26720. PubMed ID: 33847587 [TBL] [Abstract][Full Text] [Related]
32. Miscommunication in the age of communication: A crowdsourcing framework for symptom surveillance at the time of pandemics. M Zolbanin H; Hassan Zadeh A; Davazdahemami B Int J Med Inform; 2021 Jul; 151():104486. PubMed ID: 33991885 [TBL] [Abstract][Full Text] [Related]
33. Using Social Media to Help Understand Patient-Reported Health Outcomes of Post-COVID-19 Condition: Natural Language Processing Approach. Dolatabadi E; Moyano D; Bales M; Spasojevic S; Bhambhoria R; Bhatti J; Debnath S; Hoell N; Li X; Leng C; Nanda S; Saab J; Sahak E; Sie F; Uppal S; Vadlamudi NK; Vladimirova A; Yakimovich A; Yang X; Kocak SA; Cheung AM J Med Internet Res; 2023 Sep; 25():e45767. PubMed ID: 37725432 [TBL] [Abstract][Full Text] [Related]
34. Change in Threads on Twitter Regarding Influenza, Vaccines, and Vaccination During the COVID-19 Pandemic: Artificial Intelligence-Based Infodemiology Study. Benis A; Chatsubi A; Levner E; Ashkenazi S JMIR Infodemiology; 2021; 1(1):e31983. PubMed ID: 34693212 [TBL] [Abstract][Full Text] [Related]
35. Identifying and Ranking Common COVID-19 Symptoms From Tweets in Arabic: Content Analysis. Alanazi E; Alashaikh A; Alqurashi S; Alanazi A J Med Internet Res; 2020 Nov; 22(11):e21329. PubMed ID: 33119539 [TBL] [Abstract][Full Text] [Related]
36. A qualitative analysis of nursing students' tweets during the COVID-19 pandemic. De Gagne JC; Cho E; Park HK; Nam JD; Jung D Nurs Health Sci; 2021 Mar; 23(1):273-278. PubMed ID: 33404157 [TBL] [Abstract][Full Text] [Related]
37. Emergency Physician Twitter Use in the COVID-19 Pandemic as a Potential Predictor of Impending Surge: Retrospective Observational Study. Margus C; Brown N; Hertelendy AJ; Safferman MR; Hart A; Ciottone GR J Med Internet Res; 2021 Jul; 23(7):e28615. PubMed ID: 34081612 [TBL] [Abstract][Full Text] [Related]
38. Public Reactions towards the COVID-19 Pandemic on Twitter in the United Kingdom and the United States. Zou C; Wang X; Xie Z; Li D medRxiv; 2020 Jul; ():. PubMed ID: 32766599 [TBL] [Abstract][Full Text] [Related]
39. Defining facets of social distancing during the COVID-19 pandemic: Twitter analysis. Kwon J; Grady C; Feliciano JT; Fodeh SJ J Biomed Inform; 2020 Nov; 111():103601. PubMed ID: 33065264 [TBL] [Abstract][Full Text] [Related]
40. Investigating the Role of Nutrition in Enhancing Immunity During the COVID-19 Pandemic: Twitter Text-Mining Analysis. Shankar K; Chandrasekaran R; Jeripity Venkata P; Miketinas D J Med Internet Res; 2023 Jul; 25():e47328. PubMed ID: 37428522 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]