These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32937696)

  • 21. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell.
    Cai J; Zheng P; Mahmood Q
    Water Sci Technol; 2016; 73(4):947-54. PubMed ID: 26901739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An overview in the development of cathode materials for the improvement in power generation of microbial fuel cells.
    Qiu S; Guo Z; Naz F; Yang Z; Yu C
    Bioelectrochemistry; 2021 Oct; 141():107834. PubMed ID: 34022579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased power generation from primary sludge in microbial fuel cells coupled with prefermentation.
    Choi J; Ahn Y
    Bioprocess Biosyst Eng; 2014 Dec; 37(12):2549-57. PubMed ID: 24938995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel trickling microbial fuel cells for electricity generation from wastewater.
    Gao N; Fan Y; Long F; Qiu Y; Geier W; Liu H
    Chemosphere; 2020 Jun; 248():126058. PubMed ID: 32045974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates.
    Yu J; Park Y; Cho H; Chun J; Seon J; Cho S; Lee T
    Water Sci Technol; 2012; 66(4):748-53. PubMed ID: 22766862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. External CO2 and water supplies for enhancing electrical power generation of air-cathode microbial fuel cells.
    Ishizaki S; Fujiki I; Sano D; Okabe S
    Environ Sci Technol; 2014 Oct; 48(19):11204-10. PubMed ID: 25181008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Power generation by packed-bed air-cathode microbial fuel cells.
    Zhang X; Shi J; Liang P; Wei J; Huang X; Zhang C; Logan BE
    Bioresour Technol; 2013 Aug; 142():109-14. PubMed ID: 23732924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous sulfamethoxazole degradation with electricity generation by microbial fuel cells using Ni-MOF-74 as cathode catalysts and quantification of antibiotic resistance genes.
    Li S; Zhu X; Yu H; Wang X; Liu X; Yang H; Li F; Zhou Q
    Environ Res; 2021 Jun; 197():111054. PubMed ID: 33775682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of electrochemical performances and microbial community structures of two photosynthetic microbial fuel cells.
    Zheng W; Cai T; Huang M; Chen D
    J Biosci Bioeng; 2017 Nov; 124(5):551-558. PubMed ID: 28625613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insight into the performance discrepancy of GAC and CAC as air-cathode materials in constructed wetland-microbial fuel cell system.
    Ji B; Zhao Y; Yang Y; Tang C; Dai Y; Zhang X; Tai Y; Tao R; Ruan W
    Sci Total Environ; 2022 Feb; 808():152078. PubMed ID: 34863746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer.
    Liu W; Cheng S; Sun D; Huang H; Chen J; Cen K
    Biosens Bioelectron; 2015 Oct; 72():44-50. PubMed ID: 25957076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of slow-release carbon sources embedded in polymer for stable and extended power generation in microbial fuel cells.
    Li W; Quan X; Chen L; Zheng Y
    Chemosphere; 2020 Apr; 244():125515. PubMed ID: 32050331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing microbial fuel cell performance using anode modified with Fe
    Zheng X; Hou S; Amanze C; Zeng Z; Zeng W
    Bioprocess Biosyst Eng; 2022 May; 45(5):877-890. PubMed ID: 35166901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation.
    Hou B; Hu Y; Sun J
    Bioresour Technol; 2012 May; 111():105-10. PubMed ID: 22386629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of heterotrophic anodic denitrification on anolyte pH control and bioelectricity generation enhancement of bufferless microbial fuel cells.
    Ren Y; Lv Y; Wang Y; Li X
    Chemosphere; 2020 Oct; 257():127251. PubMed ID: 32512336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous copper removal and electricity production and microbial community in microbial fuel cells with different cathode catalysts.
    Wu Y; Wang L; Jin M; Zhang K
    Bioresour Technol; 2020 Jun; 305():123166. PubMed ID: 32184010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electric field induced salt precipitation into activated carbon air-cathode causes power decay in microbial fuel cells.
    An J; Li N; Wan L; Zhou L; Du Q; Li T; Wang X
    Water Res; 2017 Oct; 123():369-377. PubMed ID: 28686939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical surface modification of carbon mesh anode to improve the performance of air-cathode microbial fuel cells.
    Luo J; Chi M; Wang H; He H; Zhou M
    Bioprocess Biosyst Eng; 2013 Dec; 36(12):1889-96. PubMed ID: 23670635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced performance of an air-cathode microbial fuel cell with oxygen supply from an externally connected algal bioreactor.
    Kakarla R; Kim JR; Jeon BH; Min B
    Bioresour Technol; 2015 Nov; 195():210-6. PubMed ID: 26188984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.