These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32937762)

  • 1. Dependence of Photoresponsivity and On/Off Ratio on Quantum Dot Density in Quantum Dot Sensitized MoS
    Lai YY; Yeh YW; Tzou AJ; Chen YY; Wu YS; Cheng YJ; Kuo HC
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32937762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive Hybrid MoS
    Zhang S; Wang X; Chen Y; Wu G; Tang Y; Zhu L; Wang H; Jiang W; Sun L; Lin T; Shen H; Hu W; Ge J; Wang J; Meng X; Chu J
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23667-23672. PubMed ID: 31144499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Broadband Photodetector Based on Monolayer MoS
    Shen T; Li F; Zhang Z; Xu L; Qi J
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54927-54935. PubMed ID: 33238704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable Performance of Quantum Dot-MoS
    Chang R; Wang K; Zhang Y; Ma T; Tang J; Chen XW; Zhang B; Wang S
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):59411-59421. PubMed ID: 34851094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband, Ultra-High-Responsive Monolayer MoS
    Kolli CSR; Selamneni V; A Muñiz Martínez B; Fest Carreno A; Emanuel Sanchez D; Terrones M; Strupiechonski E; De Luna Bugallo A; Sahatiya P
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15415-15425. PubMed ID: 35347994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Organic Molecules with Different Structures and Absorption Bandwidth on Modulating Photoresponse of MoS2 Photodetector.
    Huang Y; Zheng W; Qiu Y; Hu P
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23362-70. PubMed ID: 27530058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface charge transfer doping of monolayer molybdenum disulfide by black phosphorus quantum dots.
    Wang W; Niu X; Qian H; Guan L; Zhao M; Ding X; Zhang S; Wang Y; Sha J
    Nanotechnology; 2016 Dec; 27(50):505204. PubMed ID: 27841165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of the Photoresponse of Monolayer MoS
    Li J; Nie C; Sun F; Tang L; Zhang Z; Zhang J; Zhao Y; Shen J; Feng S; Shi H; Wei X
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8429-8436. PubMed ID: 31976644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong suppression of emission quenching in core quantum dots coupled to monolayer MoS
    Pradeepa HL; Bid A; Basu JK
    Nanoscale Adv; 2020 Sep; 2(9):3858-3864. PubMed ID: 36132768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse.
    Yu SH; Lee Y; Jang SK; Kang J; Jeon J; Lee C; Lee JY; Kim H; Hwang E; Lee S; Cho JH
    ACS Nano; 2014 Aug; 8(8):8285-91. PubMed ID: 25062121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near full light absorption and full charge collection in 1-micron thick quantum dot photodetector using intercalated graphene monolayer electrodes.
    Chen W; Ahn S; Balingit M; Wang J; Lockett M; Vazquez-Mena O
    Nanoscale; 2020 Feb; 12(8):4909-4915. PubMed ID: 32064482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optoelectronic response of hybrid PbS-QD/graphene photodetectors.
    Ahn S; Chung H; Chen W; Moreno-Gonzalez MA; Vazquez-Mena O
    J Chem Phys; 2019 Dec; 151(23):234705. PubMed ID: 31864279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh photoresponsivity MoS
    Wu G; Wang X; Chen Y; Wang Z; Shen H; Lin T; Hu W; Wang J; Zhang S; Meng X; Chu J
    Nanotechnology; 2018 Nov; 29(48):485204. PubMed ID: 30215619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly responsive MoS2 photodetectors enhanced by graphene quantum dots.
    Chen C; Qiao H; Lin S; Man Luk C; Liu Y; Xu Z; Song J; Xue Y; Li D; Yuan J; Yu W; Pan C; Ping Lau S; Bao Q
    Sci Rep; 2015 Jul; 5():11830. PubMed ID: 26137854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-responsivity photodetector based on scrolling monolayer MoS
    Zhang S; Gao F; Feng W; Yang H; Hu Y; Zhang J; Xiao H; Li Z; Hu P
    Nanotechnology; 2021 Dec; 33(10):. PubMed ID: 34818634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid Black Phosphorus/Zero-Dimensional Quantum Dot Phototransistors: Tunable Photodoping and Enhanced Photoresponsivity.
    Lee AY; Ra HS; Kwak DH; Jeong MH; Park JH; Kang YS; Chae WS; Lee JS
    ACS Appl Mater Interfaces; 2018 May; 10(18):16033-16040. PubMed ID: 29649868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dot-doped porous silicon metal-semiconductor metal photodetector.
    Chou CM; Cho HT; Hsiao VK; Yong KT; Law WC
    Nanoscale Res Lett; 2012 Jun; 7(1):291. PubMed ID: 22672788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing Carrier Diffusion Length and Quantum Efficiency through Photoinduced Charge Transfer in Layered Graphene-Semiconducting Quantum Dot Devices.
    Dutta R; Pradhan A; Mondal P; Kakkar S; Sai TP; Ghosh A; Basu JK
    ACS Appl Mater Interfaces; 2021 May; 13(20):24295-24303. PubMed ID: 33998798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-exciton interaction strongly increases the efficiency of a quantum dot-based near-infrared photodetector operating in the two-photon absorption mode under normal conditions.
    Krivenkov V; Samokhvalov P; Vasil'evskii IS; Kargin NI; Nabiev I
    Nanoscale; 2021 Dec; 13(47):19929-19935. PubMed ID: 34812464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sixfold enhancement of photocurrent by surface charge controlled high density quantum dot coating.
    Lee JW; Hong JD; Park NG
    Chem Commun (Camb); 2013 Jul; 49(57):6448-50. PubMed ID: 23756491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.