These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32937887)

  • 1. Dependencies of Surface Condensation on the Wettability and Nanostructure Size Differences.
    Liao MJ; Duan LQ
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32937887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice Boltzmann Modeling of Condensation Heat Transfer on Downward-Facing Surfaces with Different Wettabilities.
    Wang X; Xu B; Chen Z; Yang Y; Cao Q
    Langmuir; 2020 Aug; 36(31):9204-9214. PubMed ID: 32660253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Study on the Combined Effects of the Nanostructure and Wettability of Solid Surfaces on Bubble Nucleation.
    Zhou W; Zhang Y; Wei J
    Langmuir; 2022 Jan; 38(3):1223-1230. PubMed ID: 34995464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Simulation of the Influence of Nanoscale Structure on Water Wetting and Condensation.
    Hiratsuka M; Emoto M; Konno A; Ito S
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vapor Condensation on Bioinspired Hierarchical Nanostructured Surfaces with Hybrid Wettabilities.
    Dai X; Wang M; Zhang J; Xin G; Wang X
    Langmuir; 2022 Sep; 38(36):11099-11108. PubMed ID: 36037002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of surface wettability on water vapor condensation in nanoscale.
    Niu D; Tang GH
    Sci Rep; 2016 Jan; 6():19192. PubMed ID: 26754316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Insight into Bubble Nucleation on the Surface with Wettability Transition at Controlled Temperatures.
    Bai P; Zhou L; Huang X; Du X
    Langmuir; 2021 Jul; 37(29):8765-8775. PubMed ID: 34259533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous nucleation of argon vapor on the nanostructure surface with molecular dynamics simulation.
    Wang Q; Xie H; Liu J; Liu C
    J Mol Graph Model; 2020 Nov; 100():107674. PubMed ID: 32750651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic Insight into the Effects of Depositional Nanoparticle on Nanoscale Liquid Film Evaporation.
    Wu L; Shao W; Cao Q; Cui Z
    Langmuir; 2021 May; 37(17):5202-5212. PubMed ID: 33881886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow Condensation Heat Transfer Characteristics of Nanochannels with Nanopillars: A Molecular Dynamics Study.
    Wang M; Sun H; Cheng L
    Langmuir; 2021 Dec; 37(50):14744-14752. PubMed ID: 34813700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation.
    Gao S; Liu W; Liu Z
    Nanoscale; 2019 Jan; 11(2):459-466. PubMed ID: 30325374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation.
    Zhakhovsky VV; Kryukov AP; Levashov VY; Shishkova IN; Anisimov SI
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18209-18217. PubMed ID: 29666235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization Method for Grooved Surface Structures Regarding the Evaporation Heat Transfer of Ultrathin Liquid Films at the Nanoscale.
    Cao Q; Cui Z; Shao W
    Langmuir; 2020 Mar; 36(11):2802-2815. PubMed ID: 32114765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamental Limits of the Spatial Control of Heterogeneous Nucleation on Biphilic Surfaces.
    Kim MK; Sett S; Hoque MJ; Kim E; Ahn J; Miljkovic N
    Langmuir; 2024 Aug; 40(33):17767-17778. PubMed ID: 39119907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate.
    Wang W; Zhang H; Tian C; Meng X
    Nanoscale Res Lett; 2015; 10():158. PubMed ID: 25918494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics investigation of surface roughness scale effect on interfacial thermal conductance at solid-liquid interfaces.
    Surblys D; Kawagoe Y; Shibahara M; Ohara T
    J Chem Phys; 2019 Mar; 150(11):114705. PubMed ID: 30902019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of substrate wettability and flexibility on the initial stage of water vapor condensation.
    Che Q; Lu Y; Wang F; Zhao X
    Soft Matter; 2019 Dec; 15(48):10055-10064. PubMed ID: 31774101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructure-Supported Evaporation Underneath a Growing Bubble.
    Ridwan S; McCarthy M
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12441-12451. PubMed ID: 30758183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Moisture Condensation on Hierarchical Structured Superhydrophobic-Hydrophilic Patterned Surfaces.
    Fu X; Zhu Q; Liu D; Liu B; Kuang L; Feng Y; Chu F; Huang Z
    Langmuir; 2022 Jan; 38(2):863-869. PubMed ID: 34968065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.