These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 3293799)

  • 1. Reconstitution of SEC gene product-dependent intercompartmental protein transport.
    Baker D; Hicke L; Rexach M; Schleyer M; Schekman R
    Cell; 1988 Jul; 54(3):335-44. PubMed ID: 3293799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex in yeast: the acceptor Golgi compartment is defective in the sec23 mutant.
    Ruohola H; Kabcenell AK; Ferro-Novick S
    J Cell Biol; 1988 Oct; 107(4):1465-76. PubMed ID: 3049622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of endoplasmic reticulum to Golgi transport in yeast: in vitro assay to characterize secretory mutants and functional transport vesicles.
    Groesch ME; Rossi G; Ferro-Novick S
    Methods Enzymol; 1992; 219():137-52. PubMed ID: 1487987
    [No Abstract]   [Full Text] [Related]  

  • 4. Inhibition of GTP hydrolysis by Sar1p causes accumulation of vesicles that are a functional intermediate of the ER-to-Golgi transport in yeast.
    Oka T; Nakano A
    J Cell Biol; 1994 Feb; 124(4):425-34. PubMed ID: 8106544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of sec mutants to define intermediates in protein transport from endoplasmic reticulum.
    Rexach MF; Schekman RW
    Methods Enzymol; 1992; 219():267-86. PubMed ID: 1488000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of protein transport using broken yeast spheroplasts.
    Baker D; Schekman R
    Methods Cell Biol; 1989; 31():127-41. PubMed ID: 2674623
    [No Abstract]   [Full Text] [Related]  

  • 7. Yeast vacuolar proenzymes are sorted in the late Golgi complex and transported to the vacuole via a prevacuolar endosome-like compartment.
    Vida TA; Huyer G; Emr SD
    J Cell Biol; 1993 Jun; 121(6):1245-56. PubMed ID: 8509446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification of yeast Sec23 protein by complementation of mutant cell lysates deficient in endoplasmic reticulum-to-Golgi transport.
    Hicke L; Yoshihisa T; Schekman RW
    Methods Enzymol; 1992; 219():338-52. PubMed ID: 1488007
    [No Abstract]   [Full Text] [Related]  

  • 9. Sequential intermediates in the transport of protein between the endoplasmic reticulum and the Golgi.
    Beckers CJ; Plutner H; Davidson HW; Balch WE
    J Biol Chem; 1990 Oct; 265(30):18298-310. PubMed ID: 2120230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of a functional vesicular intermediate that mediates ER to Golgi transport in yeast.
    Groesch ME; Ruohola H; Bacon R; Rossi G; Ferro-Novick S
    J Cell Biol; 1990 Jul; 111(1):45-53. PubMed ID: 2195039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional compartments of the yeast Golgi apparatus are defined by the sec7 mutation.
    Franzusoff A; Schekman R
    EMBO J; 1989 Sep; 8(9):2695-702. PubMed ID: 2684655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus.
    Beckers CJ; Balch WE
    J Cell Biol; 1989 Apr; 108(4):1245-56. PubMed ID: 2538479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of transport from endoplasmic reticulum to Golgi complex using endoplasmic reticulum-enriched membrane fraction from yeast.
    Wuestehube LJ; Schekman RW
    Methods Enzymol; 1992; 219():124-36. PubMed ID: 1487986
    [No Abstract]   [Full Text] [Related]  

  • 14. Reconstitution of GTP-binding Sar1 protein function in ER to Golgi transport.
    Oka T; Nishikawa S; Nakano A
    J Cell Biol; 1991 Aug; 114(4):671-9. PubMed ID: 1907974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct biochemical requirements for the budding, targeting, and fusion of ER-derived transport vesicles.
    Rexach MF; Schekman RW
    J Cell Biol; 1991 Jul; 114(2):219-29. PubMed ID: 1649197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycolipid and glycoprotein transport through the Golgi complex are similar biochemically and kinetically. Reconstitution of glycolipid transport in a cell free system.
    Wattenberg BW
    J Cell Biol; 1990 Aug; 111(2):421-8. PubMed ID: 2166051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of endoplasmic reticulum-derived vesicles in the formation of Golgi elements in sec23 and sec18 Saccharomyces Cerevisiae mutants.
    Morin-Ganet MN; Rambourg A; Clermont Y; Képès F
    Anat Rec; 1998 Jun; 251(2):256-64. PubMed ID: 9624457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP.
    McCracken AA; Brodsky JL
    J Cell Biol; 1996 Feb; 132(3):291-8. PubMed ID: 8636208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid permeases require COPII components and the ER resident membrane protein Shr3p for packaging into transport vesicles in vitro.
    Kuehn MJ; Schekman R; Ljungdahl PO
    J Cell Biol; 1996 Nov; 135(3):585-95. PubMed ID: 8909535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trafficking of lipids from the endoplasmic reticulum to the Golgi apparatus in a cell-free system from rat liver.
    Moreau P; Rodriguez M; Cassagne C; Morré DM; Morré DJ
    J Biol Chem; 1991 Mar; 266(7):4322-8. PubMed ID: 1999421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.