These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32938115)

  • 1. Remote identification of chemicals concealed behind clothing using near infrared spectroscopy.
    Canal CLM; Saleem A; Green RJ; Hutchins DA
    Anal Methods; 2011 Jan; 3(1):84-91. PubMed ID: 32938115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reflective spectroscopy investigations of clothing items to support law enforcement, search and rescue, and war crime investigations.
    Burke M; Dawson C; Allen CS; Brum J; Roberts J; Krekeler MPS
    Forensic Sci Int; 2019 Nov; 304():109945. PubMed ID: 31563009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depth profiling for the identification of unknown substances and concealed content at remote distances using time-resolved stand-off Raman spectroscopy.
    Zachhuber B; Gasser C; Ramer G; Chrysostom Et; Lendl B
    Appl Spectrosc; 2012 Aug; 66(8):875-81. PubMed ID: 22800681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ability of near-infrared spectroscopy for non-destructive detection of internal insect infestation in fruits: Meta-analysis of spectral ranges and optical measurement modes.
    Jamshidi B
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117479. PubMed ID: 31454689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote Raman Detection of Chemicals from 1752 m During Afternoon Daylight.
    Misra AK; Acosta-Maeda TE; Porter JN; Egan MJ; Sandford MW; Oyama T; Zhou J
    Appl Spectrosc; 2020 Feb; 74(2):233-240. PubMed ID: 31517522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Identification of adulterants in adulterated milks by near infrared spectroscopy combined with non-linear pattern recognition methods].
    Ni LJ; Zhong L; Zhang X; Zhang LG; Huang SX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2673-8. PubMed ID: 25739206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.
    Manley M
    Chem Soc Rev; 2014 Dec; 43(24):8200-14. PubMed ID: 25156745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Si Nanostrip Optical Waveguide for On-Chip Broadband Molecular Overtone Spectroscopy in Near-Infrared.
    Katiyi A; Karabchevsky A
    ACS Sens; 2018 Mar; 3(3):618-623. PubMed ID: 29436815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active FTIR-based stand-off spectroscopy using a femtosecond optical parametric oscillator.
    Zhang Z; Clewes RJ; Howle CR; Reid DT
    Opt Lett; 2014 Oct; 39(20):6005-8. PubMed ID: 25361141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational sum-frequency spectroscopy for trace chemical detection on surfaces at stand-off distances.
    Asher WE; Willard-Schmoe E
    Appl Spectrosc; 2013 Mar; 67(3):253-60. PubMed ID: 23452488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source.
    Kumar M; Islam MN; Terry FL; Freeman MJ; Chan A; Neelakandan M; Manzur T
    Appl Opt; 2012 May; 51(15):2794-807. PubMed ID: 22614581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voxel-based measurement sensitivity of spatially resolved near-infrared spectroscopy in layered tissues.
    Niwayama M
    J Biomed Opt; 2018 Mar; 23(3):1-4. PubMed ID: 29524320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Near-Infrared Spectroscopy and Chemometrics for the Nondestructive Identification of Concealed Damage in Raw Almonds (Prunus dulcis).
    Rogel-Castillo C; Boulton R; Opastpongkarn A; Huang G; Mitchell AE
    J Agric Food Chem; 2016 Jul; 64(29):5958-62. PubMed ID: 27309980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible-Near-Infrared Spectroscopy can predict Mass Transport of Dissolved Chemicals through Intact Soil.
    Katuwal S; Knadel M; Moldrup P; Norgaard T; Greve MH; de Jonge LW
    Sci Rep; 2018 Jul; 8(1):11188. PubMed ID: 30046043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband Mid-Infrared Stand-Off Reflection-Absorption Spectroscopy Using a Pulsed External Cavity Quantum Cascade Laser.
    Liu X; Chae I; Miriyala N; Lee D; Thundat T; Kim S
    Appl Spectrosc; 2017 Jul; 71(7):1494-1505. PubMed ID: 28664781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet/visible/NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer.
    Yang CSC; Jin F; Swaminathan SR; Patel S; Ramer ED; Trivedi SB; Brown EE; Hommerich U; Samuels AC
    Opt Express; 2017 Oct; 25(22):26885-26897. PubMed ID: 29092172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative determination of pharmaceutical drug formulations by near-infrared spectroscopic imaging.
    Kolomiets O; Hoffmann U; Geladi P; Siesler HW
    Appl Spectrosc; 2008 Nov; 62(11):1200-8. PubMed ID: 19007460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy.
    Pucci O; Toronov V; St Lawrence K
    Appl Opt; 2010 Nov; 49(32):6324-32. PubMed ID: 21068864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Variable Temperature Studies of Polyamide II with a Benchtop Fourier Transform and a Miniature Handheld Near-Infrared Spectrometer Using 2D-COS and PCMW-2D Analysis.
    Unger M; Pfeifer F; Siesler HW
    Appl Spectrosc; 2016 Jul; 70(7):1202-8. PubMed ID: 27287846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realistic Instrumentation Platform for Active and Passive Optical Remote Sensing.
    Brydegaard M; Merdasa A; Gebru A; Jayaweera H; Svanberg S
    Appl Spectrosc; 2016 Feb; 70(2):372-85. PubMed ID: 26772187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.