These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32938679)

  • 21. Water desalination by electrical resonance inside carbon nanotubes.
    Feng JW; Ding HM; Ma YQ
    Phys Chem Chem Phys; 2016 Oct; 18(40):28290-28296. PubMed ID: 27711432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination.
    Thomas M; Corry B
    Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2060):. PubMed ID: 26712639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy.
    Zhang Y; Tunuguntla RH; Choi PO; Noy A
    Philos Trans R Soc Lond B Biol Sci; 2017 Aug; 372(1726):. PubMed ID: 28630162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ion-Responsive Channels of Zwitterion-Carbon Nanotube Membrane for Rapid Water Permeation and Ultrahigh Mono-/Multivalent Ion Selectivity.
    Liu TY; Yuan HG; Li Q; Tang YH; Zhang Q; Qian W; Van der Bruggen B; Wang X
    ACS Nano; 2015 Jul; 9(7):7488-96. PubMed ID: 26153719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metallicity-Dependent Ultrafast Water Transport in Carbon Nanotubes.
    Velioğlu S; Karahan HE; Goh K; Bae TH; Chen Y; Chew JW
    Small; 2020 Jun; 16(25):e1907575. PubMed ID: 32432833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comment on "Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins".
    Horner A; Pohl P
    Science; 2018 Mar; 359(6383):. PubMed ID: 29599215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High Interfacial Barriers at Narrow Carbon Nanotube-Water Interfaces.
    Varanasi SR; Subramanian Y; Bhatia SK
    Langmuir; 2018 Jul; 34(27):8099-8111. PubMed ID: 29905485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscopic insights of saline water in carbon nanotube appended filters using molecular dynamics simulations.
    Sahu P; Musharaf Ali S; Shenoy KT; Mohan S
    Phys Chem Chem Phys; 2019 Apr; 21(16):8529-8542. PubMed ID: 30957831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Artificial water channels enable fast and selective water permeation through water-wire networks.
    Song W; Joshi H; Chowdhury R; Najem JS; Shen YX; Lang C; Henderson CB; Tu YM; Farell M; Pitz ME; Maranas CD; Cremer PS; Hickey RJ; Sarles SA; Hou JL; Aksimentiev A; Kumar M
    Nat Nanotechnol; 2020 Jan; 15(1):73-79. PubMed ID: 31844288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon nanotube porin diffusion in mixed composition supported lipid bilayers.
    Sullivan K; Zhang Y; Lopez J; Lowe M; Noy A
    Sci Rep; 2020 Jul; 10(1):11908. PubMed ID: 32681044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Vitro and In Vivo Evaluation of a Three-Dimensional Porous Multi-Walled Carbon Nanotube Scaffold for Bone Regeneration.
    Tanaka M; Sato Y; Zhang M; Haniu H; Okamoto M; Aoki K; Takizawa T; Yoshida K; Sobajima A; Kamanaka T; Kato H; Saito N
    Nanomaterials (Basel); 2017 Feb; 7(2):. PubMed ID: 28336879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrokinetic desalination using honeycomb carbon nanotubes (HC-CNTs): a conceptual study by molecular simulation.
    Chen Q; Kong X; Li J; Lu D; Liu Z
    Phys Chem Chem Phys; 2014 Sep; 16(35):18941-8. PubMed ID: 25092215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoporous Membranes of Densely Packed Carbon Nanotubes Formed by Lipid-Mediated Self-Assembly.
    Vögele M; Köfinger J; Hummer G
    ACS Appl Bio Mater; 2024 Feb; 7(2):528-534. PubMed ID: 36070609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigating the Potential of Single-Walled Aluminosilicate Nanotubes in Water Desalination.
    Liou KH; Kang DY; Lin LC
    Chemphyschem; 2017 Jan; 18(2):179-183. PubMed ID: 27925378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A molecular dynamics investigation of the influence of water structure on ion conduction through a carbon nanotube.
    Liu L; Patey GN
    J Chem Phys; 2017 Feb; 146(7):074502. PubMed ID: 28228035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations.
    Peter C; Hummer G
    Biophys J; 2005 Oct; 89(4):2222-34. PubMed ID: 16006629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination.
    Chan WF; Chen HY; Surapathi A; Taylor MG; Shao X; Marand E; Johnson JK
    ACS Nano; 2013 Jun; 7(6):5308-19. PubMed ID: 23705642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulation insights for graphene-based water desalination membranes.
    Konatham D; Yu J; Ho TA; Striolo A
    Langmuir; 2013 Sep; 29(38):11884-97. PubMed ID: 23848277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrinsic ion selectivity of narrow hydrophobic pores.
    Song C; Corry B
    J Phys Chem B; 2009 May; 113(21):7642-9. PubMed ID: 19419185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.