These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 32938985)
1. Esterified carotenoids are synthesized in petals of carnation (Dianthus caryophyllus) and accumulate in differentiated chromoplasts. Iijima L; Kishimoto S; Ohmiya A; Yagi M; Okamoto E; Miyahara T; Tsujimoto T; Ozeki Y; Uchiyama N; Hakamatsuka T; Kouno T; Cano EA; Shimizu M; Nishihara M Sci Rep; 2020 Sep; 10(1):15256. PubMed ID: 32938985 [TBL] [Abstract][Full Text] [Related]
2. Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.). In BC; Binder BM; Falbel TG; Patterson SE J Exp Bot; 2013 Nov; 64(16):4923-37. PubMed ID: 24078672 [TBL] [Abstract][Full Text] [Related]
3. Carotenoid composition and carotenogenic gene expression during Ipomoea petal development. Yamamizo C; Kishimoto S; Ohmiya A J Exp Bot; 2010 Mar; 61(3):709-19. PubMed ID: 19933319 [TBL] [Abstract][Full Text] [Related]
4. Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening. Harada T; Torii Y; Morita S; Onodera R; Hara Y; Yokoyama R; Nishitani K; Satoh S J Exp Bot; 2011 Jan; 62(2):815-23. PubMed ID: 20959626 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure. Iordachescu M; Verlinden S J Exp Bot; 2005 Aug; 56(418):2011-8. PubMed ID: 15983019 [TBL] [Abstract][Full Text] [Related]
6. Differential expression of genes identified by suppression subtractive hybridization in petals of opening carnation flowers. Harada T; Torii Y; Morita S; Masumura T; Satoh S J Exp Bot; 2010 May; 61(9):2345-54. PubMed ID: 20308205 [TBL] [Abstract][Full Text] [Related]
7. Identification of genes associated with chlorophyll accumulation in flower petals. Ohmiya A; Hirashima M; Yagi M; Tanase K; Yamamizo C PLoS One; 2014; 9(12):e113738. PubMed ID: 25470367 [TBL] [Abstract][Full Text] [Related]
8. Dissecting the mechanism of Solanum lycopersicum and Solanum chilense flower colour formation. Gao M; Qu H; Gao L; Chen L; Sebastian RS; Zhao L Plant Biol (Stuttg); 2015 Jan; 17(1):1-8. PubMed ID: 24750468 [TBL] [Abstract][Full Text] [Related]
9. Repressed ethylene production in the gynoecium of long-lasting flowers of the carnation 'White Candle': role of the gynoecium in carnation flower senescence. Nukui H; Kudo S; Yamashita A; Satoh S J Exp Bot; 2004 Mar; 55(397):641-50. PubMed ID: 14966220 [TBL] [Abstract][Full Text] [Related]
10. The Carotenoid Esterification Gene Li P; Lv S; Zhang D; Su T; Xin X; Wang W; Zhao X; Yu Y; Zhang Y; Yu S; Zhang F Front Plant Sci; 2022; 13():844140. PubMed ID: 35592555 [TBL] [Abstract][Full Text] [Related]
11. Genome-Wide Identification and Characterization of Aquaporins and Their Role in the Flower Opening Processes in Carnation ( Kong W; Bendahmane M; Fu X Molecules; 2018 Jul; 23(8):. PubMed ID: 30060619 [TBL] [Abstract][Full Text] [Related]
12. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). Shibuya K; Nagata M; Tanikawa N; Yoshioka T; Hashiba T; Satoh S J Exp Bot; 2002 Mar; 53(368):399-406. PubMed ID: 11847237 [TBL] [Abstract][Full Text] [Related]
13. Insights into carotenoid accumulation using VIGS to block different steps of carotenoid biosynthesis in petals of California poppy. Zhou J; Hunter DA; Lewis DH; McManus MT; Zhang H Plant Cell Rep; 2018 Sep; 37(9):1311-1323. PubMed ID: 29922849 [TBL] [Abstract][Full Text] [Related]
14. A quantitative framework for flower phenotyping in cultivated carnation (Dianthus caryophyllus L.). Chacón B; Ballester R; Birlanga V; Rolland-Lagan AG; Pérez-Pérez JM PLoS One; 2013; 8(12):e82165. PubMed ID: 24349209 [TBL] [Abstract][Full Text] [Related]
15. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Watanabe K; Oda-Yamamizo C; Sage-Ono K; Ohmiya A; Ono M Transgenic Res; 2018 Feb; 27(1):25-38. PubMed ID: 29247330 [TBL] [Abstract][Full Text] [Related]
16. Comparative transcriptomics and weighted gene co-expression correlation network analysis (WGCNA) reveal potential regulation mechanism of carotenoid accumulation in Chrysanthemum × morifolium. Lu C; Pu Y; Liu Y; Li Y; Qu J; Huang H; Dai S Plant Physiol Biochem; 2019 Sep; 142():415-428. PubMed ID: 31416008 [TBL] [Abstract][Full Text] [Related]
17. The mechanism of white flower formation in Brassica rapa is distinct from that in other Brassica species. Guan Z; Li X; Yang J; Zhao J; Wang K; Hu J; Zhang B; Liu K Theor Appl Genet; 2023 May; 136(6):133. PubMed ID: 37204504 [TBL] [Abstract][Full Text] [Related]
18. Analysis of genomic DNA of DcACS1, a 1-aminocyclopropane-1-carboxylate synthase gene, expressed in senescing petals of carnation (Dianthus caryophyllus) and its orthologous genes in D. superbus var. longicalycinus. Harada T; Murakoshi Y; Torii Y; Tanase K; Onozaki T; Morita S; Masumura T; Satoh S Plant Cell Rep; 2011 Apr; 30(4):519-27. PubMed ID: 21140153 [TBL] [Abstract][Full Text] [Related]
19. A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Galpaz N; Ronen G; Khalfa Z; Zamir D; Hirschberg J Plant Cell; 2006 Aug; 18(8):1947-60. PubMed ID: 16816137 [TBL] [Abstract][Full Text] [Related]
20. Integrated metabolic profiling and transcriptome analysis of pigment accumulation in Lonicera japonica flower petals during colour-transition. Xia Y; Chen W; Xiang W; Wang D; Xue B; Liu X; Xing L; Wu D; Wang S; Guo Q; Liang G BMC Plant Biol; 2021 Feb; 21(1):98. PubMed ID: 33596836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]