BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 32939077)

  • 1. Targeting co-stimulatory molecules in autoimmune disease.
    Edner NM; Carlesso G; Rush JS; Walker LSK
    Nat Rev Drug Discov; 2020 Dec; 19(12):860-883. PubMed ID: 32939077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity.
    Kumar P; Bhattacharya P; Prabhakar BS
    J Autoimmun; 2018 Dec; 95():77-99. PubMed ID: 30174217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting T cell costimulation in autoimmune disease.
    Stuart RW; Racke MK
    Expert Opin Ther Targets; 2002 Jun; 6(3):275-89. PubMed ID: 12223069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CTLA4-Ig-Based Bifunctional Costimulation Inhibitor Blocks CD28 and ICOS Signaling to Prevent T Cell Priming and Effector Function.
    Goenka R; Xu Z; Samayoa J; Banach D; Beam C; Bose S; Dooner G; Forsyth CM; Lu X; Medina L; Sadhukhan R; Sielaff B; Sousa S; Tao Q; Touw D; Wu F; Kingsbury GA; Akamatsu Y
    J Immunol; 2021 Mar; 206(5):1102-1113. PubMed ID: 33495237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concurrent OX40 and CD30 Ligand Blockade Abrogates the CD4-Driven Autoimmunity Associated with CTLA4 and PD1 Blockade while Preserving Excellent Anti-CD8 Tumor Immunity.
    Nawaf MG; Ulvmar MH; Withers DR; McConnell FM; Gaspal FM; Webb GJ; Jones ND; Yagita H; Allison JP; Lane PJL
    J Immunol; 2017 Aug; 199(3):974-981. PubMed ID: 28646041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2B4 (CD244) induced by selective CD28 blockade functionally regulates allograft-specific CD8+ T cell responses.
    Liu D; Krummey SM; Badell IR; Wagener M; Schneeweis LA; Stetsko DK; Suchard SJ; Nadler SG; Ford ML
    J Exp Med; 2014 Feb; 211(2):297-311. PubMed ID: 24493803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD28 Costimulation: From Mechanism to Therapy.
    Esensten JH; Helou YA; Chopra G; Weiss A; Bluestone JA
    Immunity; 2016 May; 44(5):973-88. PubMed ID: 27192564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges and opportunities in targeting the CD28/CTLA-4 pathway in transplantation and autoimmunity.
    Crepeau RL; Ford ML
    Expert Opin Biol Ther; 2017 Aug; 17(8):1001-1012. PubMed ID: 28525959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting the B7 family of co-stimulatory molecules: successes and challenges.
    Podojil JR; Miller SD
    BioDrugs; 2013 Feb; 27(1):1-13. PubMed ID: 23329394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CTLA4 gene polymorphism and autoimmunity.
    Gough SC; Walker LS; Sansom DM
    Immunol Rev; 2005 Apr; 204():102-15. PubMed ID: 15790353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OX40, OX40L and Autoimmunity: a Comprehensive Review.
    Webb GJ; Hirschfield GM; Lane PJ
    Clin Rev Allergy Immunol; 2016 Jun; 50(3):312-32. PubMed ID: 26215166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules.
    Zhou G; Sprengers D; Mancham S; Erkens R; Boor PPC; van Beek AA; Doukas M; Noordam L; Campos Carrascosa L; de Ruiter V; van Leeuwen RWF; Polak WG; de Jonge J; Groot Koerkamp B; van Rosmalen B; van Gulik TM; Verheij J; IJzermans JNM; Bruno MJ; Kwekkeboom J
    J Hepatol; 2019 Oct; 71(4):753-762. PubMed ID: 31195061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rationale for anti-OX40 cancer immunotherapy.
    Aspeslagh S; Postel-Vinay S; Rusakiewicz S; Soria JC; Zitvogel L; Marabelle A
    Eur J Cancer; 2016 Jan; 52():50-66. PubMed ID: 26645943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The landscape of
    de Vos L; Grünwald I; Bawden EG; Dietrich J; Scheckenbach K; Wiek C; Zarbl R; Bootz F; Landsberg J; Dietrich D
    Epigenetics; 2020 Nov; 15(11):1195-1212. PubMed ID: 32281488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating co-stimulation.
    Viglietta V; Khoury SJ
    Neurotherapeutics; 2007 Oct; 4(4):666-75. PubMed ID: 17920548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective CD28 Antagonist Blunts Memory Immune Responses and Promotes Long-Term Control of Skin Inflammation in Nonhuman Primates.
    Poirier N; Chevalier M; Mary C; Hervouet J; Minault D; Baker P; Ville S; Le Bas-Bernardet S; Dilek N; Belarif L; Cassagnau E; Scobie L; Blancho G; Vanhove B
    J Immunol; 2016 Jan; 196(1):274-83. PubMed ID: 26597009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What did we learn from CTLA-4 insufficiency on the human immune system?
    Mitsuiki N; Schwab C; Grimbacher B
    Immunol Rev; 2019 Jan; 287(1):33-49. PubMed ID: 30565239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways.
    Fife BT; Bluestone JA
    Immunol Rev; 2008 Aug; 224():166-82. PubMed ID: 18759926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulatory and Inhibitory Co-signals in Autoimmunity.
    Okazaki T; Okazaki IM
    Adv Exp Med Biol; 2019; 1189():213-232. PubMed ID: 31758536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The promise and challenges of immune agonist antibody development in cancer.
    Mayes PA; Hance KW; Hoos A
    Nat Rev Drug Discov; 2018 Jul; 17(7):509-527. PubMed ID: 29904196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.