These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

776 related articles for article (PubMed ID: 32939089)

  • 1. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis.
    Nikolaev M; Mitrofanova O; Broguiere N; Geraldo S; Dutta D; Tabata Y; Elci B; Brandenberg N; Kolotuev I; Gjorevski N; Clevers H; Lutolf MP
    Nature; 2020 Sep; 585(7826):574-578. PubMed ID: 32939089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MET Signaling Mediates Intestinal Crypt-Villus Development, Regeneration, and Adenoma Formation and Is Promoted by Stem Cell CD44 Isoforms.
    Joosten SPJ; Zeilstra J; van Andel H; Mijnals RC; Zaunbrecher J; Duivenvoorden AAM; van de Wetering M; Clevers H; Spaargaren M; Pals ST
    Gastroenterology; 2017 Oct; 153(4):1040-1053.e4. PubMed ID: 28716720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of Mouse and Human Organoid-Forming Intestinal Progenitor Cells by Direct Lineage Reprogramming.
    Miura S; Suzuki A
    Cell Stem Cell; 2017 Oct; 21(4):456-471.e5. PubMed ID: 28943029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Aged Dysfunctional Intestinal Stem Cells.
    Nalapareddy K; Geiger H
    Methods Mol Biol; 2020; 2171():41-52. PubMed ID: 32705634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal epithelial organoids fuse to form self-organizing tubes in floating collagen gels.
    Sachs N; Tsukamoto Y; Kujala P; Peters PJ; Clevers H
    Development; 2017 Mar; 144(6):1107-1112. PubMed ID: 28292848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of 3D Intestinal Organoid Cultures from Intestinal Stem Cells.
    Sugimoto S; Sato T
    Methods Mol Biol; 2017; 1612():97-105. PubMed ID: 28634937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-assembling Macro-Scale, Lumenized Airway Tubes of Defined Shape via Multi-Organoid Patterning and Fusion.
    Liu Y; Dabrowska C; Mavousian A; Strauss B; Meng F; Mazzaglia C; Ouaras K; Macintosh C; Terentjev E; Lee JH; Huang YYS
    Adv Sci (Weinh); 2021 May; 8(9):2003332. PubMed ID: 33977046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designer matrices for intestinal stem cell and organoid culture.
    Gjorevski N; Sachs N; Manfrin A; Giger S; Bragina ME; Ordóñez-Morán P; Clevers H; Lutolf MP
    Nature; 2016 Nov; 539(7630):560-564. PubMed ID: 27851739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Stem Cell Self-organization to Build Better Organoids.
    Brassard JA; Lutolf MP
    Cell Stem Cell; 2019 Jun; 24(6):860-876. PubMed ID: 31173716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studying Cryptosporidium Infection in 3D Tissue-derived Human Organoid Culture Systems by Microinjection.
    Dutta D; Heo I; O'Connor R
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31566619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal organoids: A new paradigm for engineering intestinal epithelium in vitro.
    Rahmani S; Breyner NM; Su HM; Verdu EF; Didar TF
    Biomaterials; 2019 Feb; 194():195-214. PubMed ID: 30612006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Converging biofabrication and organoid technologies: the next frontier in hepatic and intestinal tissue engineering?
    Schneeberger K; Spee B; Costa P; Sachs N; Clevers H; Malda J
    Biofabrication; 2017 Mar; 9(1):013001. PubMed ID: 28211365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-Term Culture of Intestinal Organoids.
    Lee SB; Han SH; Park S
    Methods Mol Biol; 2018; 1817():123-135. PubMed ID: 29959709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling human hepato-biliary-pancreatic organogenesis from the foregut-midgut boundary.
    Koike H; Iwasawa K; Ouchi R; Maezawa M; Giesbrecht K; Saiki N; Ferguson A; Kimura M; Thompson WL; Wells JM; Zorn AM; Takebe T
    Nature; 2019 Oct; 574(7776):112-116. PubMed ID: 31554966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomaterials and biosensors in intestinal organoid culture, a progress review.
    Huang J; Jiang Y; Ren Y; Liu Y; Wu X; Li Z; Ren J
    J Biomed Mater Res A; 2020 May; 108(7):1501-1508. PubMed ID: 32170907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the biomechanics of stem cell niche formation in the gut--modelling growing organoids.
    Buske P; Przybilla J; Loeffler M; Sachs N; Sato T; Clevers H; Galle J
    FEBS J; 2012 Sep; 279(18):3475-87. PubMed ID: 22632461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform.
    Candiello J; Grandhi TSP; Goh SK; Vaidya V; Lemmon-Kishi M; Eliato KR; Ros R; Kumta PN; Rege K; Banerjee I
    Biomaterials; 2018 Sep; 177():27-39. PubMed ID: 29883914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular self-assembly and biomaterials-based organoid models of development and diseases.
    Shah SB; Singh A
    Acta Biomater; 2017 Apr; 53():29-45. PubMed ID: 28159716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mini-gut organoids: reconstitution of the stem cell niche.
    Date S; Sato T
    Annu Rev Cell Dev Biol; 2015; 31():269-89. PubMed ID: 26436704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium.
    Wang Y; Gunasekara DB; Reed MI; DiSalvo M; Bultman SJ; Sims CE; Magness ST; Allbritton NL
    Biomaterials; 2017 Jun; 128():44-55. PubMed ID: 28288348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.