These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 32939219)
1. Integral representation of generalized grey Brownian motion. Bock W; Desmettre S; da Silva JL Stochastics (Abingdon); 2019 Jul; 92(4):552-565. PubMed ID: 32939219 [TBL] [Abstract][Full Text] [Related]
2. Ornstein-Uhlenbeck process and generalizations: Particle dynamics under comb constraints and stochastic resetting. Trajanovski P; Jolakoski P; Zelenkovski K; Iomin A; Kocarev L; Sandev T Phys Rev E; 2023 May; 107(5-1):054129. PubMed ID: 37328979 [TBL] [Abstract][Full Text] [Related]
3. Regularized fractional Ornstein-Uhlenbeck processes and their relevance to the modeling of fluid turbulence. Chevillard L Phys Rev E; 2017 Sep; 96(3-1):033111. PubMed ID: 29346948 [TBL] [Abstract][Full Text] [Related]
4. Beyond Brownian Motion and the Ornstein-Uhlenbeck Process: Stochastic Diffusion Models for the Evolution of Quantitative Characters. Blomberg SP; Rathnayake SI; Moreau CM Am Nat; 2020 Feb; 195(2):145-165. PubMed ID: 32017624 [TBL] [Abstract][Full Text] [Related]
5. Exponential stability for neutral stochastic functional partial differential equations driven by Brownian motion and fractional Brownian motion. Zhang X; Ruan D J Inequal Appl; 2018; 2018(1):201. PubMed ID: 30839575 [TBL] [Abstract][Full Text] [Related]
6. Brownian motion in non-equilibrium systems and the Ornstein-Uhlenbeck stochastic process. Donado F; Moctezuma RE; López-Flores L; Medina-Noyola M; Arauz-Lara JL Sci Rep; 2017 Oct; 7(1):12614. PubMed ID: 28974759 [TBL] [Abstract][Full Text] [Related]
7. Path integrals for fractional Brownian motion and fractional Gaussian noise. Meerson B; Bénichou O; Oshanin G Phys Rev E; 2022 Dec; 106(6):L062102. PubMed ID: 36671110 [TBL] [Abstract][Full Text] [Related]
8. Discriminating Gaussian processes via quadratic form statistics. Balcerek M; Burnecki K; Sikora G; Wyłomańska A Chaos; 2021 Jun; 31(6):063101. PubMed ID: 34241327 [TBL] [Abstract][Full Text] [Related]
9. Stochastic dynamic models and Chebyshev splines. Fan R; Zhu B; Wang Y Can J Stat; 2014 Dec; 42(4):610-634. PubMed ID: 26045632 [TBL] [Abstract][Full Text] [Related]
10. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications. Ding XL; Nieto JJ Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265151 [TBL] [Abstract][Full Text] [Related]
11. Taylor approximation of the solution of age-dependent stochastic delay population equations with Ornstein-Uhlenbeck process and Poisson jumps. Li WR; Zhang QM; Anke MB; Ye M; Li Y Math Biosci Eng; 2020 Mar; 17(3):2650-2675. PubMed ID: 32233559 [TBL] [Abstract][Full Text] [Related]
12. A spatial stochastic neuronal model with Ornstein-Uhlenbeck input current. Tuckwell HC; Wan FY; Rospars JP Biol Cybern; 2002 Feb; 86(2):137-45. PubMed ID: 11911115 [TBL] [Abstract][Full Text] [Related]
13. From Ornstein-Uhlenbeck dynamics to long-memory processes and fractional Brownian motion. Eliazar I; Klafter J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021115. PubMed ID: 19391714 [TBL] [Abstract][Full Text] [Related]
14. Reexamining the framework for intermittency in Lagrangian stochastic models for turbulent flows: A way to an original and versatile numerical approach. Letournel R; Goudenège L; Zamansky R; Vié A; Massot M Phys Rev E; 2021 Jul; 104(1-2):015104. PubMed ID: 34412248 [TBL] [Abstract][Full Text] [Related]
15. When can we reconstruct the ancestral state? Beyond Brownian motion. Vu NL; Nguyen TP; Nguyen BT; Dinh V; Ho LST J Math Biol; 2023 May; 86(6):88. PubMed ID: 37142869 [TBL] [Abstract][Full Text] [Related]
16. Stochastic averaging for a type of fractional differential equations with multiplicative fractional Brownian motion. Wang R; Xu Y; Pei B Chaos; 2022 Dec; 32(12):123135. PubMed ID: 36587315 [TBL] [Abstract][Full Text] [Related]
17. Application of OU processes to modelling temporal dynamics of the human microbiome, and calculating optimal sampling schemes. Kenney T; Gao J; Gu H BMC Bioinformatics; 2020 Oct; 21(1):450. PubMed ID: 33045987 [TBL] [Abstract][Full Text] [Related]
18. Modelling group movement with behaviour switching in continuous time. Niu M; Frost F; Milner JE; Skarin A; Blackwell PG Biometrics; 2022 Mar; 78(1):286-299. PubMed ID: 33270218 [TBL] [Abstract][Full Text] [Related]