These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32939379)

  • 1. Properties, X-ray data and 2D WAXD fitting procedures of melt-spun poly(ɛ-caprolactone).
    Selli F; Gooneie A; Erdoğan UH; Hufenus R; Perret E
    Data Brief; 2020 Oct; 32():106223. PubMed ID: 32939379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray data from a cyclic tensile study of melt-spun poly(3-hydroxybutyrate) P3HB fibers: A reversible mesophase.
    Perret E; Reifler FA; Gooneie A; Hufenus R
    Data Brief; 2019 Aug; 25():104376. PubMed ID: 31497630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fitting of 2D WAXD data: Mesophases in polymer fibers.
    Perret E; Hufenus R
    Data Brief; 2021 Dec; 39():107466. PubMed ID: 34703857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray data about the structural response of melt-spun poly(3-hydroxybutyrate) fibers to stress and temperature.
    Perret E; Reifler FA; Gooneie A; Chen K; Selli F; Hufenus R
    Data Brief; 2020 Aug; 31():105675. PubMed ID: 32462064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2D Raman, ATR-FTIR, WAXD, SAXS and DSC data of PET mono- and PET/PA6 bicomponent filaments.
    Sharma K; Braun O; Tritsch S; Muff R; Hufenus R; Perret E
    Data Brief; 2021 Oct; 38():107416. PubMed ID: 34632014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-Property Relationship in Melt-Spun Poly(hydroxybutyrate-co-3-hexanoate) Monofilaments.
    Selli F; Hufenus R; Gooneie A; Erdoğan UH; Perret E
    Polymers (Basel); 2022 Jan; 14(1):. PubMed ID: 35012222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WAXD, polarized ATR-FTIR and DSC data of stress-annealed poly(3-hydroxybutyrate) fibers.
    Perret E; Sharma K; Tritsch S; Hufenus R
    Data Brief; 2021 Dec; 39():107523. PubMed ID: 34805457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ɛ-caprolactone) composites reinforced by biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber.
    Ju D; Han L; Li F; Chen S; Dong L
    Int J Biol Macromol; 2014 Jun; 67():343-50. PubMed ID: 24704167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile preparation of biocompatible poly (lactic acid)-reinforced poly(ε-caprolactone) fibers via graphite nanoplatelets -aided melt spinning.
    Kelnar I; Zhigunov A; Kaprálková L; Fortelný I; Dybal J; Kratochvíl J; Nevoralová M; Hricová M; Khunová V
    J Mech Behav Biomed Mater; 2018 Aug; 84():108-115. PubMed ID: 29772384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epitaxial Crystallization of Poly(ε-caprolactone) on Reduced Graphene Oxide at a Low Shear Rate by
    Miao W; Wu F; Zhou S; Yao G; Li Y; Wang Z
    ACS Omega; 2020 Dec; 5(49):31535-31542. PubMed ID: 33344805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Properties of a Metallocene Polypropylene Resin with Low Melting Temperature for Melt Spinning Fiber Application.
    Xu R; Zhang P; Wang H; Chen X; Xiong J; Su J; Chen P; Zhang Z
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 31013610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of shear on epitaxial crystallization of poly(ε-caprolactone) on reduced graphene oxide.
    Wu F; Jiang L; Miao W; Duan T; An M; Tian F; Wang Z
    RSC Adv; 2018 Feb; 8(12):6406-6413. PubMed ID: 35540405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure and Tensile Properties of Melt-Spun Filaments of Polybutene-1 and Butene-1/Ethylene Copolymer.
    Li J; Qiao Y; Zhang H; Zheng Y; Tang Z; Zeng Z; Yao P; Bao F; Liu H; Yu J; Zhu C; Xu J
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling Topography and Crystallinity of Melt Electrowritten Poly(ɛ-Caprolactone) Fibers.
    Blum C; Weichhold J; Hochleitner G; Stepanenko V; Würthner F; Groll J; Jungst T
    3D Print Addit Manuf; 2021 Oct; 8(5):315-321. PubMed ID: 36654937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning--a way to produce high strength biodegradable fibers.
    Pal J; Kankariya N; Sanwaria S; Nandan B; Srivastava RK
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4213-20. PubMed ID: 23910335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-conventional injection molding of poly(lactide) and poly(epsilon-caprolactone) intended for orthopedic applications.
    Altpeter H; Bevis MJ; Grijpma DW; Feijen J
    J Mater Sci Mater Med; 2004 Feb; 15(2):175-84. PubMed ID: 15330053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melt-spun bio-based PLA-co-PET copolyester fibers with tunable properties: Synergistic effects of chemical structure and drawing process.
    Zhang Z; Zhou J; Yu S; Wei L; Hu Z; Xiang H; Zhu M
    Int J Biol Macromol; 2023 Jan; 226():670-678. PubMed ID: 36521703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Melt-Spun Polymer-Optical Poly(methyl methacrylate) Fibers Studied by Small-Angle X-ray Scattering.
    Beckers M; Vad T; Mohr B; Weise B; Steinmann W; Gries T; Seide G; Kentzinger E; Bunge CA
    Polymers (Basel); 2017 Feb; 9(2):. PubMed ID: 30970738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical response of melt-spun amorphous filaments.
    Leal AA; Mohanty G; Reifler FA; Michler J; Hufenus R
    Sci Technol Adv Mater; 2014 Jun; 15(3):035016. PubMed ID: 27877692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the Influence of PCL on the In Vitro Degradation of Extruded PLA Monofilaments and Melt-Spun Filaments.
    Barral V; Dropsit S; Cayla A; Campagne C; Devaux É
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33418932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.