These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32939606)

  • 21. The differential loading of two barley CENH3 variants into distinct centromeric substructures is cell type- and development-specific.
    Ishii T; Karimi-Ashtiyani R; Banaei-Moghaddam AM; Schubert V; Fuchs J; Houben A
    Chromosome Res; 2015 Jun; 23(2):277-84. PubMed ID: 25688006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Vivo and In Situ Replication Labeling Methods for Super-resolution Structured Illumination Microscopy of Chromosome Territories and Chromatin Domains.
    Miron E; Innocent C; Heyde S; Schermelleh L
    Methods Mol Biol; 2016; 1431():127-40. PubMed ID: 27283306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combining FISH with localisation microscopy: Super-resolution imaging of nuclear genome nanostructures.
    Weiland Y; Lemmer P; Cremer C
    Chromosome Res; 2011 Jan; 19(1):5-23. PubMed ID: 21190132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Super-resolution Chromatin Visualization Using a Combined Method of Fluorescence In Situ Hybridization and Structured Illumination Microscopy in Solanum lycopersicum.
    Kuo P; Darbyshire A; Lambing C
    Methods Mol Biol; 2022; 2484():85-92. PubMed ID: 35461446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interspecific hybrids of Hordeum marinum ssp. marinum x H. bulbosum are mitotically stable and reveal no gross alterations in chromatin properties.
    Sanei M; Pickering R; Fuchs J; Banaei Moghaddam AM; Dziurlikowska A; Houben A
    Cytogenet Genome Res; 2010 Jul; 129(1-3):110-6. PubMed ID: 20551604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Super-resolution microscopy approaches to nuclear nanostructure imaging.
    Cremer C; Szczurek A; Schock F; Gourram A; Birk U
    Methods; 2017 Jul; 123():11-32. PubMed ID: 28390838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Centromere-specific acetylation of histone H4 in barley detected through three-dimensional microscopy.
    Wako T; Houben A; Furushima-Shimogawara R; Belyaev ND; Fukui K
    Plant Mol Biol; 2003 Mar; 51(4):533-41. PubMed ID: 12650619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RASER-FISH: non-denaturing fluorescence in situ hybridization for preservation of three-dimensional interphase chromatin structure.
    Brown JM; De Ornellas S; Parisi E; Schermelleh L; Buckle VJ
    Nat Protoc; 2022 May; 17(5):1306-1331. PubMed ID: 35379945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Higher-Order Chromatin Organization Using 3D DNA Fluorescent In Situ Hybridization.
    Szabo Q; Cavalli G; Bantignies F
    Methods Mol Biol; 2021; 2157():221-237. PubMed ID: 32820407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nano-sizing of specific gene domains in intact human cell nuclei by spatially modulated illumination light microscopy.
    Hildenbrand G; Rapp A; Spöri U; Wagner C; Cremer C; Hausmann M
    Biophys J; 2005 Jun; 88(6):4312-8. PubMed ID: 15805170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and Proteomics Analysis of Barley Centromeric Chromatin Using PICh.
    Zeng Z; Jiang J
    J Proteome Res; 2016 Jun; 15(6):1875-82. PubMed ID: 27142171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Imaging nanoscale nuclear structures with expansion microscopy.
    Faulkner EL; Pike JA; Densham RM; Garlick E; Thomas SG; Neely RK; Morris JR
    J Cell Sci; 2022 Jul; 135(14):. PubMed ID: 35748225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley.
    Houben A; Schroeder-Reiter E; Nagaki K; Nasuda S; Wanner G; Murata M; Endo TR
    Chromosoma; 2007 Jun; 116(3):275-83. PubMed ID: 17483978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expansion Microscopy for Cell Biology Analysis in Fungi.
    Götz R; Panzer S; Trinks N; Eilts J; Wagener J; Turrà D; Di Pietro A; Sauer M; Terpitz U
    Front Microbiol; 2020; 11():574. PubMed ID: 32318047
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Ultrastructure of the DNP fibrils and of the interchromatin granules in isolated nuclei of the rat liver].
    Poliakov VIu; Kir'ianov GI; Manamsh'ian TA; Faĭs D; Chentsov IuS
    Tsitologiia; 1979 May; 21(5):514-9. PubMed ID: 462536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. iU-ExM: nanoscopy of organelles and tissues with iterative ultrastructure expansion microscopy.
    Louvel V; Haase R; Mercey O; Laporte MH; Eloy T; Baudrier É; Fortun D; Soldati-Favre D; Hamel V; Guichard P
    Nat Commun; 2023 Nov; 14(1):7893. PubMed ID: 38036510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expansion STED microscopy (ExSTED).
    Gao M; Thielhorn R; Rentsch J; Honigmann A; Ewers H
    Methods Cell Biol; 2021; 161():15-31. PubMed ID: 33478688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ten-fold Robust Expansion Microscopy.
    Damstra HGJ; Mohar B; Eddison M; Akhmanova A; Kapitein LC; Tillberg PW
    Bio Protoc; 2023 Jun; 13(12):e4698. PubMed ID: 37397797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Replication Labeling Methods for Super-Resolution Imaging of Chromosome Territories and Chromatin Domains.
    Miron E; Windo J; Ochs F; Schermelleh L
    Methods Mol Biol; 2022; 2476():111-128. PubMed ID: 35635700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving the resolution of fluorescence nanoscopy using post-expansion labeling microscopy.
    Hamel V; Guichard P
    Methods Cell Biol; 2021; 161():297-315. PubMed ID: 33478694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.